
Physical Media Covert Channels on Smart Mobile Devices

Ed Novak Yutao Tang Zijiang Hao Qun Li
The College of William and Mary, Williamsburg, VA

{ejnovak,yytang,hebo,liqun}@cs.wm.edu

Yifan Zhang
Binghamton University, Binghamton, NY

zhangy@binghamton.edu

ABSTRACT
In recent years mobile smart devices such as tablets and
smartphones have exploded in popularity. We are now in a
world of ubiquitous smart devices that people rely on daily
and carry everywhere. This is a fundamental shift for com-
puting in two ways. Firstly, users increasingly place unprece-
dented amounts of sensitive information on these devices,
which paints a precarious picture. Secondly, these devices
commonly carry many physical world interfaces. In this pa-
per, we propose information leakage malware, specifically
designed for mobile devices, which uses covert channels over
physical “real-world” media, such as sound or light. This
malware is stealthy; able to circumvent current, and even
state-of-the-art defenses to enable attacks including privilege
escalation, and information leakage. We go on to present a
defense mechanism, which balances security with usability
to stop these attacks.

Author Keywords
Physical Media; Covert Channel; Sensors; Privacy; Security;
Smart Mobile Device

ACM Classification Keywords
C.2.0 Computer-Communication Networks: General – Secu-
rity and Protection; D.4.6 Operating Systems: Security and
Protection

INTRODUCTION
Since the introduction of the iPhone in 2007 mobile comput-
ing using smartphones and tablets has exploded and is still
climbing [21]. There is currently a plethora of Windows, An-
droid, and iOS devices available to consumers containing a
wide assortment of physical sensors. Consumers have come
to expect smart mobile devices as common place. They are
now carried everywhere and relied on daily. This is proving
to be a fundamental shift for computing in two ways. First,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UbiComp ’15, September 7–11, 2015, Osaka, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3574-4/15/09...$15.00
http://dx.doi.org/10.1145/2750858.2804253

these devices carry an unprecedented amount of sensitive in-
formation such as contact information, passwords, GPS loca-
tion traces, financial information, and personal attributes such
as sexual orientation and health data. Secondly, smart mobile
devices are commonly equipped with a variety of physical
interface hardware such as accelerometers, cameras, vibra-
tion motors, speakers, and microphones. Users of smart de-
vices are expected to be conscious of a myriad of security
best practices to protect this data, such as using unique and
strong passwords for their various services, enforcing rea-
sonable permission allocations to applications, and protecting
highly sensitive information with encryption (or keeping this
information off the device). These sort of defense schemes
are largely lost on users [6], and can be difficult to implement
for developers [7, 26]. In this paper we preemptively propose
a new form of malware, tailored specifically to mobile com-
puting, along with a first step defense mechanism in hopes
to alert the community of this potential threat and spur future
research.

This work is interesting because we can exploit several prop-
erties of mobile computing. Firstly, the abundance of sensi-
tive information found on these devices is highly valuable to
attackers. Passwords are an obvious example, but attackers
may also try to learn users’ addresses and financial informa-
tion, which can be used to steal their identity. Users’ political
views or sexual orientations, can be used by oppressive gov-
ernments or organizations. Their personal traits and interests
can be used to answer common second factor “security ques-
tions” such as their childhood home, or pet’s name. Secondly,
we exploit the variety of physical world sensors to establish
several unique covert channels, which we refer to as “physical
media covert channels” (PMCC). Because of the architecture
currently in place in mobile operating systems, we show that
we can easily design malware, using PMCC, to appear be-
nign, fooling both non-expert humans and software systems
seeking to eliminate malicious software; making it a variant
of a Trojan.

Designing and implementing the PMCCs we use in our mal-
ware is difficult, because we must achieve two goals at the
same time. First, speed. Previous work has shown that as lit-
tle as 100 bits per second is enough to pose a serious threat
[41], we show that at least one of our covert channels can

367

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

achieve a few thousand bits per second. Secondly, stealth.
The stealth of the covert channels is very important so they
are difficult to defend against. They must go unnoticed by
the user, and appear to be benign from the point of view of
the software. Additionally, defending against these channels
is challenging, because we must differentiate between benign
and malicious sensor use without interrupting key features or
annoying the user with confirmation dialogs.

Our attacks overcome not only the current, widely deployed
defense mechanisms, but also the defense schemes posed in
recent literature. Most recent work in this area can be di-
vided into three areas: taint-analysis, elaborate security pol-
icy mechanisms, and application market curation. Taint-
analysis can be used to identify sensitive information as it
flows through an application and notifying the user or stop-
ping this sensitive information from leaving the device and
being leaked. Sensitive information sources are marked as
such (e.g., the user’s contact list) and sinks are identified that
will ultimately leak this information (e.g., the Socket API).
Security policies can be written by users, or automatically,
that disallow certain types of malicious behavior. Market cu-
ration techniques aim to identify and remove malicious ap-
plications from the market before users even have a chance
to install it. Our attacks overcome all of these approaches
because of our physical medium covert channels, which are
novel and difficult to differentiate from benign behavior accu-
rately. Our defense scheme provides a framework, that can be
extended in the future, to identify and defend against variants
of the malware we propose.

In this paper we identify a new malware specifically designed
for mobile devices. PMCCs used in the malware are con-
structed using the sensors found on smart devices. We show
that our malware can easily leak sensitive user information,
such as bank statements, or location traces despite any cur-
rent defense mechanism. Building such a system introduces
several challenges including achieving a high bit rate, and low
detectability (stealth). We go on to propose a defense scheme
against these attacks, which can be implemented by the oper-
ating system provider, that aims to enable taint tracking over
these channels. To summarize, in this paper we make the fol-
lowing contributions:

• We propose a new class of covert channels for smart mobile
devices that utilize real world interfaces (e.g., the vibra-
tion motor and the accelerometer). We generalize these as
“physical medium covert channels” and demonstrate that
they can achieve varying levels of stealth, and speed.

• We design, and implement five example PMCCs, which
utilize ultra-sound, physical vibration, light, and the user
themselves. We spend extra effort on our ultrasound chan-
nel to show that with some engineering effort we can
achieve a very high transmission rate.

• We use our PMCCs to design a new variant of Trojan Horse
malware, which appears to be benign but actually leaks
sensitive user information. We give a specific example
called “Jog-Log.”

• We propose and implement a novel defense scheme that
takes a framework approach. The defense aims to prop-
agate taint information across these channels, while still
maintaining high usability of benign applications.

• We evaluate prototypes of each covert channel and the de-
fense mechanism. We show that our ultrasound covert
channel achieves 3.71kbps, and our gyroscope channel is
very stealthy. Our defense scheme maintains high usability
for the user, while stopping all of the proposed attacks with
low overhead.

RELATED WORK
Covert channels have a rich academic history [18, 23]. Butler
Lampson first described “the confinement problem” [17], in
which one entity (the client) must trust another (the server)
with some data to perform some calculation. Ideally, the
server would be confined, and unable to transmit or store the
data. Mr. Lampson, however, was unable to envision all the
possible ways that the service may transmit this data. To put
the work in this paper in the context of the confinement prob-
lem, our work adds new channels by which a confined server
can transmit data to itself, or to another process.

Covert channels on smartphones have been studied previ-
ously [5, 32], but to the best of the author’s knowledge, we are
the first to propose covert channels that use physical media,
rather than internal / virtual media such as processor work-
load, or file size.

There are several works [22, 32, 34, 36, 37] that attempt to
steal some data from the user, utilizing a variety of different
internal / virtual covert channels to perform privilege esca-
lation, and circumvent taint-tracking analysis, similar to our
work. Our contribution in this paper is unique in that it is
the first to use PMCCs. These channels are particularly dan-
gerous because they are much more difficult to identify as
malicious. We also propose a robust defense.

Works on defense mechanisms for the attacks similar to what
we propose in this paper can be broken into three categories.
In the first, researchers propose that we replace sensitive
data with “mock” data when feeding it to untrusted applica-
tions [2, 15]. These systems do protect user information, but
they erode the quality of benign applications and are intrusive
to users, who must make either a few broad decisions or many
small decisions to protect their data.

The second category of defense is taint tracking analysis, [3,
9, 11, 16]. In these systems, sensitive information APIs are
marked as “sources.” Variables that store this information
(e.g., microphone data, user contacts) are marked as “tainted.”
The tainted data are followed through the execution of the
program, tainting other data that they effect explicitly (direct
assignment). If tainted information reaches a sensitive sink
(e.g., Internet Socket, IPC, etc.), the flow is stopped and/or
the user is notified.

Machine learning is proposed in [30] to identify sources and
sinks during run-time. Their system, “SuSi”, relies on su-
pervised learning, which means a list of known (manually
tagged as malicious or benign) Android APIs are used to train

368

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

a classifier. The system classifies based on features such as
method name (i.e., “get...”, “put...”), and method call return
type. These taint-tracking systems cannot be naively adapted
for use to defend against our covert channels because we can-
not treat every invocation of a sensor API with sensitive in-
formation, to be malicious. An application may use a device
benignly at one time, and maliciously at another time. For
example, an incoming SMS will almost certainly activate the
speaker or vibration motor or both benignly.

The third defense mechanism is alternate permission systems,
[10, 19, 33, 38, 40]. These systems are not a good solution
to the attack proposed in this paper, because any user inter-
action with sensitive sources is interrupted with some GUI
prompt. Because so many covert channels can be built, and
sensitive information is commonly accessed on these devices,
these prompts would arise far too frequently. Many systems
propose more fine-grained permissions, [4, 8, 25, 43]. These
systems rely on the user to construct policies, which will stop
malicious use cases, but allow benign ones. We argue that
writing an effective policy is too difficult for users.

Our defense scheme is similar to the recent work “ASM” [14].
Both systems hook into key system events, and then allow ap-
plication developers or security researchers to define specific
actions that can be taken on these events. We are not able to
leverage this work directly in our implementation because the
current ASM implementation does not include the devices we
focus on in this paper such as the sensors, speaker and micro-
phone, or the vibration motor. Our contribution, which ASM
encourages, is the specifics of the treatment once these events
occur.

THREAT MODEL
We assume the attacker is remote. He or she does not have
any physical access to the user’s device and cannot alter the
operating system, or any other software, already running on
the user’s device. The attacker’s goal is to convince the user to
run their malicious code, which is used to obtain some infor-
mation about the user. By “attain” we mean that the attacker’s
code accesses some sensitive information, and transmits it,
over the Internet, to an attacker controlled host machine.

In order to send information out over the Internet in the ma-
licious application, without requesting the Internet permis-
sion, the attacker can exploit a simple capability leak, which
is a form of a confused deputy attack [11] using the web
browser. Android applications can ask the browser to open
URLs on their behalf without declaring the Internet permis-
sion. The attacker can include some CGI parameters (e.g.,
attackerhost.com/collector?usersecret=val) to transmit sensi-
tive information to their own controlled host. Although there
are protections against these attacks [3, 20], they are not
widely deployed. Furthermore, the attacker can always just
declare the Internet permission and communicate with their
host directly, although this is less stealthy to the user.

Creating Applications The attacker is able to implement An-
droid applications which are, from the point of view of the
adversary, normal applications. The attacker does not have to
provide the source code to these apps, distributing only .apk

files, which are essential .zip archives of java byte code and
application assets such as image files and text files containing
localized strings.

In order to convince the user to install these applications,
the attacker can employ a few well studied techniques.
Specifically, to circumvent application market curation tech-
niques [1, 45, 46, 47], a malicious application developer can
employ obfuscation such as utilizing native code, java reflec-
tion, remote code downloading, identify malware-detection
environments [27], or other more sophisticated techniques
[28, 31, 37]. This allows the application to appear in applica-
tion markets, drastically increasing the number of people that
will run it.

To be more specific, the attacker aims to build a trojan, which
by definition, appears to be benign from the point of view of
the user, but actually performs some malicious activity. The
attacker can even implement complete benign functionality to
produce a convincing trojan.

Timing The attacker can employ standard Android timing
mechanisms such as the “ScheduledExecutorService”, in or-
der to execute certain portions of their code at certain times
of day (to increase stealth), and to ensure that two different
components (possibly in two different applications) run at the
same time to facilitate covert channel transmission.

Accessing Sensitive Information As mentioned previously,
there are many pieces of information that may be considered
sensitive on a typical smart mobile device. This information
can be organized into three forms based on how it is accessed.

First, applications maintain sensitive information and may ex-
pose it for use by other applications. For example, the contact
manager application maintains contact information for other
people. Typically individual contacts can be “shared” via an
interface between the contact app and another app (e.g. the
SMS app may be able to access an individual contact to send
the phone number of that contact to a friend). Typically this
type of information is guarded with some permissions. For
example, to read the phone records of the user, the application
must declare the “READ CALL LOG” permission, which is
displayed to the user at install time. For first party applica-
tions such as the phone call app, a permission is always nec-
essary, for third party applications it is less common.

Secondly, certain hardware devices can provide sensitive in-
formation immediately, such as the GPS radio. These devices
are guarded by permissions, but other sensors, which are not
traditionally thought of as sensitive, do not require permis-
sions to access, such as the accelerometer and gyroscope.

Third, sensitive information can be extrapolated from these
sources. For example, by polling the GPS sensor regularly
the attacker can likely learn the user’s home address and work
address by examining where they are late at night and during
the day on work-days. These sort of inference or extrapola-
tion attacks are plentiful in recent research [19, 34, 36].

Attacker Limitations The attacker cannot access the hard-
ware devices, such as the accelerometer and microphone, ex-
cept by going through the provided Android APIs. This is

369

SESSION: SECRUITY TRICKS

Sensor
(Accelerometer)

Channel

Physical

Sensor
(Vibration Motor)

Sensitive
Information

(GPS Trace)

4

Attacker

5

Internet

1 2

3

Android API

Application Application

Figure 1. Information flow using physical covert channels.

enforced already in commodity Android due to user permis-
sions, and SELinux. This means that the attacker must abide
by the permission system that governs these APIs. The at-
tacker does not have root level access on the user’s device.

We do not focus on the case where the attacker tries to use
some physical medium covert channel to communicate with
another proximal device. Although it may be possible to form
some sort of ad-hoc network out of nearby adversary and
attacker controlled devices, we consider this scenario to be
largely impractical and unlikely.

TROJAN HORSE MALWARE DESIGN
In this section we present a general trojan horse malware,
specifically designed for commodity smart mobile devices
that utilizes PMCCs. Our malware aims to appear benign to
users and software systems, while actually leaking sensitive
user information to an attacker controlled host over the Inter-
net. A high level view of the malware can be seen in Fig. 1.
The attack works in four phases. First the malware is installed
by the user on their personal device. Then it accesses some
sensitive information, such as the user’s GPS location trace.
Third, the malicious application component encodes the in-
formation and sends it out over a physical device. In Fig. 1
the vibration motor is used as an example. At the same time,
a second attacker controlled application component is used
in the background to gather samples from the corresponding
sensor. This second application component decodes the sig-
nal from the sensor, obtaining the original data (untainted).
Finally, the receiver application component sends this infor-
mation to some attacker controlled host on the Internet.

By “laundering” the information over a PMCC, we circum-
vent the current, widely adopted permission systems on mo-
bile devices, which try to isolate the data of each application
in respective sandboxes. Our channels allow applications to
share information without the OS or even current state-of-the-
art defense schemes, (including those based on taint-tracking
[3, 9, 11, 16]), being alerted. Because none of the systems
in recent literature (to the best of our knowledge) account for
transmission over physical media, our covert channels pose a
novel threat.

Example Trojan Application — Jog-Log
An example trojan application might be a fitness app, which
helps users track their running progress. The attacker’s goal is
to attain the user’s home address. The application implements
a simple “jogging journal” which determines when, for how
long, and where a user jogs to help them track their progress.

The application is closed source and is submitted to a well
known application market.

The user, interested in jogging, finds the app in the market
and installs it. Because they are weary of their information
being leaked, they run the taint-droid system on their device
[9]. When they want to begin a run, he or she starts the appli-
cation and the GPS radio is used by the app to track the run.
The application declares the permission to access the GPS
radio, but it does not request the Internet permission. The ap-
plication also requests access to the microphone to allow the
user to add simple “voice notes” to their journal entires (e.g.,
“I was greeted with a beautiful sunrise this morning thanks to
my new jogging hobby!”).

Later, at night when the user is sleeping, the application uses
the ScheduleExecutorService to wake up and use a PMCC to
transmit the location information gathered earlier during the
most recent run. Specifically, the speaker is used to produce
an ultrasonic signal. At the same time, the microphone is
used to decode the signal in a second component (part of the
same application, running simultaneously in a second thread).
Because the information has been laundered over a PMCC,
the original taint-tags associated with location have been lost.
Then, the second component forms a URL with the attacker’s
host as the domain, and the user’s location as a CGI parameter
and asks the browser to open this page.

The attacker sets up a special web server to respond to these
requests by recording the CGI parameters in a file associated
with the IP address of the user. Once the data is at the at-
tacker’s host, the attacker can find the street address nearest
the GPS coordinates logged at the start and end of the user’s
runs, which is likely their home address.

Attack Variations
An attacker must control two application components, (e.g.
a foreground activity and a background service), one sender
and one receiver, to implement a covert channel. These com-
ponents can be part of the same application, to circumvent
taint-tracking analysis, or two different applications, to cir-
cumvent taint-tracking and the current, widely deployed per-
mission system and information sand-boxing. If the attacker
chooses to use two independent applications, they must con-
vince the user to install both of them. To achieve this, the
attacker can craft these applications so they are related, with
some combined functionality and do in-app cross promo-
tion. This is common practice with many developers in the
Android ecosystem. The “Go Launcher” [35] and “Yahoo
Weather” [44] apps serve as just two prominent examples.

In our Jog-Log example, the attacker may instead choose to
place the voice note feature in a second, stand alone applica-
tion and do in-app cross promotion. If the user installs both
apps, then the attacker can use the covert channel to move the
location information from Jog-Log into the voice recording
app using a PMCC, and then use the voice recording app to
transmit the data to their host. In this case, the voice record-
ing app can declare the Internet permission, and still the user
will not expect that there is any way that their location in-

370

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

formation (in the Jog-Log app with no Internet permission)
could possibly be sent out over the Internet.

If the developer chooses to implement two components in
the same application, then the malware can defeat current
state-of-the-art defense techniques, but will be less stealthy
to users, because it must present all of the corresponding per-
missions together at install time. Fortunately, it has been
shown that the permission system is commonly abused by
users and developers [26], so this is not a large concern.

If the attacker is a large enterprise that distributes smart mo-
bile devices, they can include the malware via pre-installed
applications. This approach is much simpler because the at-
tacker does not need to be concerned with market curation,
or convincing users the permissions required do not pose a
threat. Pre-installed applications are also significantly more
difficult for users to remove, due to both technical and poten-
tial legal challenges. However, few attackers have control of
an enterprise or a similar level of influence over which apps a
user has installed.

COVERT CHANNEL DESIGN
The foundation of our newly proposed malware, is our novel
physical media covert channels. In this section we discuss our
implementation of five such channels, to increase the attack
surface, making the defense more difficult, easing the task
of creating seemingly benign malware, and to show that the
different channels have different strengths.

Each channel utilizes different permissions. We summarize
what Android permissions are used in Table 1. For the re-
mainder of this paper, we will use the row numbers of this ta-
ble to refer to specific permissions. It is important to note that
permissions (4) and (5) are actually members of Android’s
“uses-feature” tag, not the “uses-permissions” tag, which are
optionally used by the developer.

All of our channels are stealthy to software, because until
now, none of them are considered to be able to transmit and
receive information. They have varying stealth in regards to
the user, which we detail in each channel subsection.

Ultrasound We put extra effort into the development of our
ultrasound covert channel to show that these physical medium
covert channels have potential for relatively high bit-rates.
This channel uses the speaker and microphone found on smart
devices. The main idea is we send very-high frequency, mod-
ulated sound waves (above 18kHz) in packets from the device
speaker to the microphone. Permissions (1) and (3) are used.

A high level view of the ultrasound covert channel can be
seen in Fig. 2. Here the attacker can control one malicious
application (housing both the modulator and demodulator),
or two applications, where the demodulator is separated out.
The malicious sender generates packets in the “Modulator”
module and sends sound data over the device’s speaker. The
receiver uses the microphone to record this sound. The sig-
nal is first parsed by the hail listener, which finds the starting
point. Then, using the Fourier Transform (FFT) module, the
malicious receiver can recover the data.

App 1

Modulator

App 2Data: 0101...

Hail OFDM Data

Android API

Speaker Microphone

Demodulator (FFT)

Hail Listener

Data: 0101...

Information

Leak

Figure 2. High level module view of the ultrasound covert channel.

We choose to use 18khz - 22kHz, because this spectrum is
inaudible to humans (stealthy), below the Nyquist frequency
for most smart devices, and has relatively low background
noise [29]. In order to remain inaudible, but still achieve a
high bit-rate, we choose to work in the frequency domain.
We generate data segments 882 samples long, each of which
is the sum of many modulated sub-carrier frequencies.

si =
22kHz∑

f=18kHz

sin(2 ∗ π ∗ i ∗ f

Fs
+ θ) : ∀i ∈ [1− 882] (1)

Each sub-carrier (of which there are 70, spaced 50Hz apart)
encodes a binary phase value and a binary amplitude (19%
or 100%). We reserve four sub-carriers for calibration (18k,
19k, 20k, 21k), which are used to reduce error when recov-
ering bits. This affords a maximum theoretical throughput
of roughly 6.5kbps, which is high compared to traditional
covert channels, [41]. The receiver can use the FFT, to deter-
mine the amplitude and phase of each sub-carrier frequency
present in a given packet S = {s1, s2, ..., si}. This is com-
monly referred to as orthogonal frequency division multiplex-
ing (OFDM). When designing our system we used the follow-
ing parameters. Packets of length i = 882 samples (20ms),
Γ = 50Hz sub-carrier width, and sample rate Fs = 44.1kHz.
We use 3.5kHz of spectrum from 18kHz to 21.5kHz.

Speaker and Accelerometer The speaker on most smart de-
vices can cause the entire device to vibrate, if the tones are
played with a loud enough volume. We use the speaker
as a sender, playing standard Dual-Tone Multi-Frequency
(DTMF) tones, and the accelerometer to measure the vibra-
tion of the phone, which will resonate with the tones be-
ing played. We then perform binary amplitude shift keying
to modulate the data. DTMF codes are used because smart
phones are designed to produce them well, and they are less
conspicuous in this context. Permissions (1) and (4) are used.
Although this channel is slower, and less stealthy than our ul-
trasound channel, we present it to demonstrate that seemingly
arbitrary sensors can be combined to form a channel.

Vibration and Accelerometer Our vibration channel uses
the vibration motor (6), normally used for silent notifica-
tions, as the sender, and the accelerometer (4) as the receiver.
Again, binary amplitude shift keying is used for modulation.
The stealth of this channel can be increased, by transmitting
immediately after benign vibration events. In this way, the

371

SESSION: SECRUITY TRICKS

Permission Hardware Description
1 MODIFY AUDIO SETTINGS Speaker Change volume
2 CAPTURE AUDIO OUTPUT Direct access to speaker buffer (e.g., record phone call)
3 RECORD AUDIO Microphone Use microphone
4 android.hardware.sensor.accelerometer Accelerometer Use accelerometer
5 android.hardware.sensor.gyroscope Gyroscope Use gyroscope
6 VIBRATE Vibration Motor Use vibration motor
7 WAKE LOCK Screen Prevent device from locking automatically
8 CAMERA Camera Take pictures
9 FLASHLIGHT Camera Flash Use lamp
10 READ PHONE STATE Phone Learn if phone is locked or a call is active
11 INTERNET Open network sockets

Table 1. Summary of various permissions used by our covert channels

user may mistake the transmission for a long notification or
may not notice at all.

Flash and Camera In this channel the camera’s flash (9) is
used to send data and the camera (8) is used to receive it. We
simply turn the lamp on and off and run some simple image
processing on the captured image preview from the camera
to transmit data. The average brightness of the image should
be much higher if the lamp is on, compared to when it is off.
This channel has several draw-backs. Firstly, the camera can
only be used by an application if a preview is shown in the
foreground. Secondly, the camera light is very obvious and
suspicious to even non-savvy users. Thirdly, this channel re-
lies on some assumptions about physical orientation and en-
vironment. We show in our evaluation that the channel works
even when the device is placed camera-down on a flat surface,
which increases the practicality and stealthiness toward users.

User and Gyroscope The main idea of this covert channel is
much different from the others. Here, we tilt the phone, and
measure this action using the gyroscope (5). Bits are encoded
in the angle of the device over time. To transmit the bits, we
fool the user into tilting the device in the correct sequence by
implementing a simple “endless running” game. In the “end-
less running” genre, an avatar moves down a track collecting
items and avoiding obstacles. The user is tasked with tilting
the device (or swiping) left and right to move the character
on and off several different tracks. Endless running games
typically feature randomly generated tracks, with the chal-
lenge being how long the user can avoid the obstacles. We
simply generate the track according to the bit stream to be
transmitted. This channel is highly stealthy in that the user is
interacting directly with the device, and will have no idea the
channel is being used. In fact, the user is part of the channel!

We make a novel generalization of this concept we call “user-
sensor” covert channels, which fool the user into taking spe-
cific actions (touching areas of the screen, pressing hardware
buttons, etc.), which act as data transmission symbols. User-
sensor channels present many unique challenges such as han-
dling inevitable user errors, and clever game design, which
are out of the scope of this paper.

DEFENSE
The attacks presented in the first half of this paper demon-
strate the need for a new robust defense mechanism to pro-
tect sensitive data stored on smart mobile devices. Because
we propose PMCCs which can be built from several differ-
ent physical interfaces, a prudent defense cannot apply blan-

ket or coarse grain rules, such as prompting for user input
when these interfaces are used, or blocking their use all to-
gether. Applying traditional defense schemes naively, like
TaintDroid [9], or elaborate policy based security, would
severely decrease the usability of the device, as the physical
interfaces are commonly used benignly.

Our proposed defense system architecture, illustrated in
Fig. 3, is comprised of two main components or stages. The
detection stage aims to maintain an always up to date record,
during run time, of which application components are using
which potential covert channel devices. If two potential chan-
nel devices are being utilized simultaneously, we propagate
the taint tag from the data on the sender side, to the data on
the receiver side. Thereby extending the existing taint track-
ing solutions. Then, in the treatment stage, we provide some
additional protections according to a configuration file.

Stage One - Detection
Fortunately, as illustrated in Fig. 1, any application that is try-
ing to transmit using a covert channel, must use an API pro-
vided by the operating system to access the hardware device.
In order to detect the API use, we add a system service called
the “GuardService” to the operating system. The GuardSer-
vice maintains an “active senders” list of components that are
utilizing sender devices (e.g., the speaker). The elements in
the “active senders” list are used to store the taint-tags of the
data being transmitted. Because we extend the existing Taint-
Droid implementation, this taint information is a 32-bit bit-
mask.

The GuardService exposes three methods; .add(component,
device, tag), .remove(component, device), and .lookup-
Tag(component, device). The first method adds a component,
and a taint tag, to the “active senders” list, the second method
removes components from the list, and the third returns the
taint tag from the given component and device pair if it is in
the list. We modify the Android system device APIs to auto-
matically call these methods.

The Android device APIs are modified so that when a compo-
nent begins using a sender device, the .add() method is called,
and the taint-tag from the data flowing to the device is stored
in the GuardService. The API is also modified so that sam-
ples flowing from receiver devices (e.g., the microphone) are
intercepted. The .lookup() method is called in these places to
retrieve the taint-tag from any possible corresponding and ac-
tive sender devices in the “active senders” list. Then, the taint
tag is propagated (bitwise OR as shown in combineTaint() in

372

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

newOutputDataEvent()

new value(s): data

Guard Service

Register

SystemSensorManager.java

AudioTrack.java

AudioRecord.java

VibratorService.java
vibratePattern()

vibrate()

onSensorChanged

mRecordState

mPlayState

Camera.java

Application Component 3

Application Component 2

Application Component 1

1010...0011
Associated Taint Bitmask

(32 bits)

App Component

combineTaint()

return (data | taint)

Active Senders

Android System

(a) Defense System Architecture. Various system API classes are altered to hook into the “GuardSer-
vice” Android system service. The GuardService detects potential channels and applies the configured
treatment.

Conf. File

Components
Application

Spkr

Vib

Flash

Screen

Detection Stage

Alter Signal

Dynamic
Switch

Permissions
Reduce

Treatment Stage

newOutputDataEvent()

Deliver Samples

T
im

e

Alert User

Rate Limit

Choose One

(b) Defense System Framework.

Figure 3. Architecture and Framework for our defense system. Applications that use sender devices are recorded. When there is a new data event for
some hardware, the taint tag is propagated by our service, before the samples are delivered to the appropriate application component(s).

Fig. 3 (a)) to the new receiver device data. Finally, the API
is modified to call the .remove() method when the sender de-
vices are no longer being used.

When the malicious code uses a covert channel, the previ-
ous work breaks down. By doing this, our system allows the
taint information to traverse from the sender side to the data
on the receiver side, as depicted in Fig. 3. And, by using
taint-tracking analysis, we can ignore benign instances when
physical devices are being used, but there is no sensitive in-
formation flow.

Stage Two - Treatment
To improve on this, we present several potential treatment
methods in a second stage. As illustrated in Fig. 3 (b), when
a covert channel is detected, our system intervenes and reads
a user controlled configuration file to determine how to act.
Allowing different treatments is the crux of our framework,
which allows us to include the best ideas from recent litera-
ture, as well as leave the system open for improvement in the
future, when new covert channels are discovered.

Alert The User The weakest choice of treatment is for the
system to alert the user of a possible information leak.

Choose One One device is turned off (the samples are
dropped) for the duration the other device is in use. Which
device is allowed and which is prohibited is a tunable param-
eter.

Dynamically Switch Allow only one device to operate tran-
siently based on a simple threshold. For example, a video
conferencing application may access the speaker and micro-
phone concurrently. However, in typical conversation it is
uncommon that both parties are actually speaking at the same
time. Based on which signal is stronger (i.e. RMS for audio
signals), we allow only one to flow, as illustrated in Fig. 4.
By switching dynamically between the two sensors, we guar-
antee the covert channel cannot be utilized, because there is

Time

...

...

Speaker

Microphone

t

Figure 4. “Dynamically Switch” treatment method. The speaker and
the microphone cannot be accessed at the same time. The active device
is chosen in each time window by calculating which root mean squared
(RMS) is larger. The other device is silenced.

never a time when both sensors are active, but benign appli-
cations are still usable.

Rate Limit For the flash and camera channel, the two devices
must be used at the same time in order to take pictures in low
light conditions. Instead of prohibiting access to one device,
one possible solution is to limit the rate at which that device
can be used.

Altering the Signal For all of these channels, we can increase
the error rate the attacker achieves by changing the signal. For
example, filtering out ultrasonic audio, removing samples to
create random pauses, or inserting noise in the signal. How-
ever, we must be careful not to effect benign behavior. Clever
approaches may be possible, but unfortunately, must be tai-
lored specifically to the encoding scheme of the attacker, as
well as the signal processing of the benign application(s).

Reduce Permissions There are several ways we can defeat
the channel by altering the permissions of the application
components involved. For example, each component can be
re-assigned the intersection of the permissions of both tem-
porarily.

Technical Challenges and Implementation Details
We implement a prototype of our defense scheme on Android
by downloading and modifying the Android Open Source
Project (AOSP) source code. For taint tracking, we extend
the existing Taint-Droid system [9].

373

SESSION: SECRUITY TRICKS

By default, none of the Android device API classes will no-
tify our GuardService when devices are in use, which is nec-
essary in order to propagate taint information over the covert
channel. We modify the API for each device to hook into
our “GuardService” accordingly. But, a trivial approach can-
not be taken. Because the devices vary greatly, the source
code for these classes is complex, and there are many poten-
tial pitfalls. In the following we analyze the API of each of
the sender devices and detail how we implement the hook.

Flash For the camera and flash covert channel, we describe
how to transmit data using the flash, but there are actually sev-
eral parameters that can be used to encode data such as the im-
age resolution, which are provided in a Camera.Parameters
class. When the camera is opened, the GuardService.add()
method is called and we propagate the taint tag of the en-
tire class instance to the “active senders” list. GuardSer-
vice.lookup() is called when a picture is taken or preview
frames are delivered and GuardService.remove() is called
when the camera is closed.

Speaker For covert channels using the speaker, the devel-
oper can implement the speaker API in one of two modes;
a streaming mode and a static mode. In the static mode, the
developer first instantiates an AudioTrack class instance, and
writes any sound data using the .write() method, which writes
an array to an internal buffer. Later, the developer calls a
.play() method which instructs the hardware to actually play
the signal previously written. Alternatively, the developer can
choose to implement streaming mode, in which the developer
calls the .play() method first, and then, after some time, the
.write() method, which will instantly generate the sound.

Our system places GuardService.add() and starts a timer on
one of these methods appropriately depending on the mode;
.play() in static mode and .write() in streaming mode. We can
estimate the duration that the speaker will be making noise
based on the sample rate and the size of the array(s) passed
to .write(). The timer, of the same duration, is used to call
GuardService.remove(). A similar, timer-based, approach is
taken for the vibration motor, which also provides an API
method that returns immediately.

User and Game For this channel, the sender appears to be
the user, but actually, the user responds to the information
presented on the screen by the malicious game. Because the
attacker has implemented a game for this channel, it is safe
to assume that they will implement a canvas element to draw
the game graphics. The Android canvas element exposes an
onDraw method to the developer, which is called rapidly to
update the current frame on the screen. We can propagate the
taint tags from the variables used in onDraw that are used in
helper functions such as drawRect() and drawArc().

Limitations – Implicit Flow Taint Tracking
As we mentioned previously, we leverage the existing Taint-
Droid work for dynamic taint tracking analysis [9]. This sys-
tem only tracks explicit flows, meaning direct assignments
from one variable to another as shown in Fig. 5. However, in
this case, it is very likely the attacker will use implicit flows
to encode the sensitive information, as shown in Fig. 6.

s = api.getSensitiveInfo();
a = s;
a = s.getCharAt(3);
networkAPI.transmit(a);

Figure 5. Examples of explicit information flow.

signalSampleList = new List();
s = api.getSensitiveInfo();
for bit in s.toBinary(){
if(bit == 0){
signalSampleList.addSilence(500);

}
else{
signalSampleList.addNoise(500);

}
}
vibrationAPI.vibrate(signalSampleList);

Figure 6. Example of implicit information flow.

To overcome this challenge, we propose a method inspired
by previous work [24]. We identify these implicit flows us-
ing static analysis and include implicit flow taint propagation
rules following a simple heuristic: If a branch depends on a
tainted value, then we should propagate the taint tag to the
variables assigned inside the branch. Our modifications are
done in three stages. First, at install time, the application is
decompiled from the dex files to Java code. Then, we use
static analysis to automatically find implicit flow blocks. We
re-write the application code to propagate taint information
into the variables in these blocks. Then, in the final stage, we
recompile the application, re-generate the .apk file, and install
it on the users device. To reduce false positives, we only ap-
ply our implicit flow propagation if the output variable data
depends on the entirety of the sensitive input data.

This approach is not perfect, malware has a long history of
resisting such techniques. We leave more robust automatic
application re-writing, implicit flow taint tag propagation, and
code block analysis to future work.

EVALUATION
In our system we implement five covert channels, which uti-
lize physical mediums (e.g., sound, vibration). We implement
all five covert channels as single user-space applications. The
two application scenario, with one sender and one receiver
will not have any effect on transmission speed, errors, or
stealth, so we did not implement it. The ultrasound chan-
nel was evaluated on an LG-C800 smartphone. The speaker
/ accelerometer, vibration / accelerometer, and light / cam-
era channels were tested on a Samsung Nexus S and the
game / gyroscope channel was tested on a Google Nexus 4.
The dynamic switching defense evaluation was done on the
Nexus S and LG-C800. The taint tracking experiments were
done with a Galaxy Nexus.

Covert Channels
To evaluate the ultrasound covert channel, we implemented
an android application that generates ultra-sound packets, as

374

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

described previously. We transmitted 1000 bits in twelve iter-
ations and plotted the percentage of bits recovered incorrectly
in Fig. 7. We can see that the total error percentage and phase

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

Run

E
rr

o
rs

 (
%

)

Total

Amplitude

Phase

Figure 7. Ultrasound Bit Error Rate. Phase and Amplitude correspond
to bit errors from demodulating these sub-carrier attributes respectively.

error percentage have high variance (6.98, and 6.01 respec-
tively). Trial number six shows that, occasionally, the channel
can achieve very low error rates. Amplitude error has lower
variance (0.57) and shows a lower mean (3.3%). Using both
phase and amplitude, we can achieve a bit rate of 6.5kbps
with relatively high mean error (14%), and by utilizing am-
plitude only, we can achieve a lower rate of 3.25kbps that is
more consistent.

We performed a short audibility user study to show that our
ultrasound scheme is stealthy. A random string of 1000 bits
was encoded and transmitted three times in the presence of
ten individuals between the ages of twenty and thirty. The ex-
periments were held in two different meetings, with a volume
of 6

16 . Participants were not notified beforehand of the exper-
iment and were questioned shortly afterwards about having
heard anything. Unanimously, nobody was able to hear our
system being used. Even after being told, and actively listen-
ing, untrained users are unable to hear the ultrasound emitted.

Speaker & Accelerometer We implemented the speaker and
accelerometer covert channel described previously and we
used it to transmit 1024 random bits, ten times, at a rate of
2bps to measure the bit error rate. Because we don’t have ro-
bust synchronization, our demodulator sometimes inserts ex-
tra (incorrect) bits or drops bits. We count the total number of
bits in error as the sum of the number of inserted, dropped, or
incorrectly decoded (flipped) bits. Each type is only counted
as one error, even though missing a bit will propagate errors
through the rest of the bit stream. For this channel, the recov-
ery is very good; we had only four bit errors (0.039%). Six of
the runs transmitted with no errors at all.

Vibration Motor & Accelerometer To evaluate this channel
we transmitted 1024 random bits ten times and recorded the
bit errors, by type, in Fig. 8. This channel has a low error rate
and achieves 2bps throughput. Similar to the Speaker and
Accelerometer channel, we can see that there are only a few
bits which were incorrectly decoded, the rest of the errors are
due to improper synchronization.

Camera & Flash We transmitted 1024 bits using the channel
ten times and measured the bit error rate and transmission
time. The experiments were done in a dark room (similar to
when the user may be sleeping), which can be seen in Fig 9.

1 2 3 4 5 6 7 8 9 10
0

2

4

Run

E
rr

o
rs

 Inserted

Dropped

Incorrect

Figure 8. Vibration bit error types

Over all ten trials, there were no bit recovery errors and the
transmission time was very consistent at 664 seconds (±2).
The bit rate we achieve is 1.5bps. The limiting factor here is
the camera preview, which takes about one second and must
be started and stopped each time to change the flash’s state.
We also performed a simple test to confirm that the camera

(a) Camera Down, Flash (b) Camera Down, No Flash

Figure 9. Camera images captured with and without flash. Images gath-
ered when the phone was camera down, on a desk.

can be in different orientations and environments. We placed
the phone flat on the ground, in a poorly lit area under a desk,
held upright in a dark room at night, and flat, camera down on
a desk (Fig. 9). We transmitted eight bits using the channel
each time and we were able to recover all of them with no
errors in every scenario. We can attribute this success to the
physical design of camera hardware on the phone (Samsung
Nexus S). There is a small gap between the actual sensor, and
the back of the phone (they are not flush), which allows some
light to travel from the flash to the camera lens, even when
the camera is facing down on a table. This greatly improves
the stealthyness of the channel, as the user will not notice the
flash when blocked by the desk.

User / Gyroscope We implemented a simple game in which
the user is instructed by a foreground application to rotate the
phone in one of the three axes (6 different symbols). A back-
ground service measures the gyroscope at the same time to
decode the bits. The user is tasked with finishing each rota-
tion task in as short a time as possible. We played this game
ten times and transmitted twenty symbols each time. On av-
erage, the user is able to rotate the phone in 1.02 seconds,
making for a bit rate of roughly 2.5bps. There were no bit
errors whatsoever.

Comparison In Table 2 we compare the average case error
rate and speed of each covert channel. In order to remove
transmission errors entirely, we can use hamming codes to
correct single packet errors and retransmit packets containing
more than one error [39]. We estimate the effective speed
after hamming codes are applied in the “Eff. Speed” column.

Defense

375

SESSION: SECRUITY TRICKS

Channel Error Speed Eff. Speed
Speaker/Mic 14.4% 6.5kbps 3.71kbps

Spkr/Mic (Amp Only) 3.3% 3.25kbps 2.73kbps
Speaker/Accelerometer 0.04% 2bps 1.99bps

Vibration/Accelerometer 0.28% 2bps 1.94bps
Light/Camera 0% 1.5bps 1.5bps

User Game/Gyroscope 0% 2.5bps 2.5bps
Table 2. Comparing best case speed and average error rate of various
covert channels before error correction coding (Speed) and after (Eff.
Speed).

Channel Delivery Time Delivery Time
(no active channels) (active channel)

Ultrasound 37.5ms 38.5ms
Speaker/Accel. 5ms 7.5ms

Vibration/Accel. 4.9ms 6.1ms
Light/Camera 8.36ms 10.1ms

Table 3. Overhead

For our defense system, effectiveness and usability are top
concerns. Unfortunately, performing a robust effectiveness
evaluation is difficult, because there is no known or cataloged
malware in the wild that, to the best of our knowledge, takes
advantage of PMCC as described in this paper. Therefore,
we can only test the system on our own contrived examples,
in all of these cases, the system was able to identify active
covert channels, and propagate the taint-tag information. Our
system currently breaks down in situations involving implicit
flows. Currently, we do not have a robust solution for taint-
tracking through implicit flows, but in the future, we plan to
implement a better solution, at which time an effectiveness
evaluation will be more interesting.

To measure the usability, we record the time it takes for the
system to deliver new samples to the various devices (over-
head), the time added by our application re-writing to support
implicit flows (overhead), and the use-ability of benign appli-
cations under our dynamic switching treatment technique.

Taint Propagation
We implemented our defense by leveraging the existing Taint-
Droid implementation [9]. Therefore, the memory overhead
is identical to their work. The stack is basically doubled in
size, due to the extra space needed to store the taint val-
ues (except for arrays which share one taint-tag for the en-
tire structure). However, when new samples are delivered,
our system introduces some time overhead, because we must
lookup and propagate (bitwise OR) the taint value from the
sender data to the receiver data. We implemented the ultra-
sound, speaker + accelerometer, vibration + accelerometer,
and the light + camera channels. We measured the average
time for the dispatchSensorEvent() to finish delivering the
data with and without our system running over ten runs. The
results are presented in Table 3.

Implicit Flow Propagation
To measure the overhead introduced by our implicit flow taint
propagation solution, we manually re-wrote a representative
if statement in an Android app using the d2j decompiler, and
the Google provided application packaging tools. The body

of the if statement contains a for loop, similar to Fig. 6, a
primitive variable assignment, an array element assignment,
a function call, and a custom object construction. To ensure
the taint values are propagated within the implicit flow code
bodies, we multiply the to-be-tainted variables by a tainted
variable with the value one. By doing this, we guarantee that
the variable will receive the taint tag (through the direct as-
signment taint-droid rule), but also that the variable data will
not by modified (multiplying by one has no effect). In 25 trial
runs of this if statement, our re-written version, which prop-
agates taint tags into all of this data, introduced only 1ms of
overhead on average.

Dynamic Switching
To evaluate the effectiveness of this defense treatment, we im-
plemented a very simple speaker / microphone covert chan-
nel. The speaker makes some audible sound and the micro-
phone records this sound. Loud and quiet periods correspond
to “1” and “0” bits respectively, with symbols 0.5s wide. We
sent the bit sequence 01010011 twice; once using our defense
and once without. We plotted the data the microphone mea-
sured in Fig 10. We can see that when the defense is running

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

−2000

−1000

0

1000

2000

Sample Index

A
m

p
lit

u
d

e

 Undefended

Defended

Figure 10. Samples gathered from the microphone while transmitting
from the speaker. The data with the defense scheme running is plotted
in red.

(plotted in red), the symbols are almost completely erased.
The small tail at the end of each symbol is the result of the
slow propagation time of sound and hardware introduced la-
tency. We consider this problem to be negligible, because the
tails are very brief, and conceal the transmission of consecu-
tive “1s”.

We also used a VoIP app (Skype), to measure usability. We
instrumented our system on one phone and made a phone call
to a second phone. Both users were able to hold a brief ten
second conversation without any words being dropped or mis-
understood.

CONCLUSION
In this paper we present an attack on mobile smart devices
that leverages physical media covert channels to enable privi-
lege escalation and ultimately leak sensitive user information.
We also present a novel defense technique that balances us-
ability with the security and privacy concerns raised by this
attack.

ACKNOWLEDGMENTS
We would like to sincerely thank the anonymous, Ubicomp
2015 reviewers. Their insightful comments and feedback
helped us shape this paper. The W&M team was supported
in part by NSF grant CNS-1117412 and the CAREER Award
CNS-0747108.

376

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

REFERENCES
1. Aafer, Y., Du, W., and Yin, H. Droidapiminer: Mining

api level features for robust malware detection in
android. In Proceedings of the 9th International
Conference on Security and Privacy in Communication
Networks (SecureComm) (Sydney, Australia, September
25-27 2013).

2. Beresford, A. R., Rice, A., and Skehin, N. Mockdroid :
trading privacy for application functionality on
smartphones. HotMobile ’11 Proceedings of the 12th
Workshop on Mobile Computing Systems and
Applications (2011), 49–54.

3. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T.,
Sadeghi, A.-R., and Shastry, B. Towards taming
privilege-escalation attacks on android. Proceedings of
the 19th Annual Network & Distributed System Security
Symposium (2012).

4. Bugiel, S., Heuser, S., and Sadeghi, A.-R. Flexible and
fine-grained mandatory access control on android for
diverse security and privacy policies. In Proceedings of
the 22Nd USENIX Conference on Security, SEC’13,
USENIX Association (Berkeley, CA, USA, 2013),
131–146.

5. Chandra, S., Lin, Z., Kundu, A., and Khan, L. Towards a
systematic study of the covert channel attacks in
smartphones. Proceedings of the 10th International
Conference on Security and Privacy in Communications
Networks, SecureComm (2014).

6. Das, A., Bonneau, J., Caesar, M., Borisov, N., and
Wang, X. The tangled web of password reuse. NDSS
(February 2014), 23–26.

7. Egele, M., Brumley, D., Fratantonio, Y., and Kruegel, C.
An empirical study of cryptographic misuse in android
applications. Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security -
CCS ’13 (2013), 73–84.

8. Enck, W. Defending users against smartphone apps:
techniques and future directions. Proceedings of the 7th
international conference on Information Systems
Security (ICISS’11) 7093 (2011), 49–70.

9. Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J.,
McDaniel, P., and Sheth, A. N. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, USENIX Association
(Berkeley, CA, USA, 2010), 1–6.

10. Fragkaki, E., Bauer, L., Jia, L., and Swasey, D.
Modeling and enhancing android’s permission system.
In ESORICS, S. Foresti, M. Yung, and F. Martinelli,
Eds., vol. 7459 of Lecture Notes in Computer Science,
Springer (2012), 1–18.

11. Grace, M., Zhou, Y., Wang, Z., and Jiang, X. Systematic
detection of capability leaks in stock android
smartphones. Proceedings of the 19th Network and

Distributed System Security Symposium (NDSS 2012)
(2012).

12. Han, H., Liu, Y., Shen, G., Zhang, Y., and Li, Q.
Dozyap: Power-efficient wi-fi tethering. In Proceedings
of the 10th International Conference on Mobile Systems,
Applications, and Services, MobiSys ’12, ACM (New
York, NY, USA, 2012), 421–434.

13. Han, H., Sheng, B., Tan, C., Li, Q., and Lu, S. A
measurement based rogue ap detection scheme. In
INFOCOM 2009, IEEE (April 2009), 1593–1601.

14. Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-R.
Asm: A programmable interface for extending android
security. In 23rd USENIX Security Symposium (USENIX
Security 14), USENIX Association (San Diego, CA,
Aug 2014), 1005–1019.

15. Hornyack, P., Han, S., Jung, J., Schechter, S., and
Wetherall, D. These aren’t the droids you’re looking for:
Retrofitting android to protect data from imperious
applications. In Proceedings of the 18th ACM
Conference on Computer and Communications Security,
CCS ’11, ACM (New York, NY, USA, 2011), 639–652.

16. Klieber, W., Flynn, L., Bhosale, A., Jia, L., and Bauer,
L. Android taint flow analysis for app sets. In ACM
SIGPLAN International Workshop on the State Of the
Art in Java Program Analysis (SOAP 2014) (June 2014).
To appear.

17. Lampson, B. W. A note on the confinement problem.
Commun. ACM 16, 10 (Oct. 1973), 613–615.

18. Lipner, S., Jaeger, T., and Zurko, M. E. Lessons from
vax/svs for high-assurance vm systems. Security
Privacy, IEEE 10, 6 (Nov 2012), 26–35.

19. Livshits, B., and Jung, J. Automatic mediation of
privacy-sensitive resource access in smartphone
applications. In Proceedings of the 22Nd USENIX
Conference on Security, SEC’13, USENIX Association
(Berkeley, CA, USA, 2013), 113–130.

20. Lu, L., Li, Z., Wu, Z., Lee, W., and Jiang, G. Chex:
Statically vetting android apps for component hijacking
vulnerabilities. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security,
CCS ’12, ACM (New York, NY, USA, 2012), 229–240.

21. Lunden, I. 6.1b smartphone users globally by 2020,
overtaking basic fixed phone subscriptions.
http://www.bloomberg.com/news/articles/2012-10-
17/smartphones-in-use-surpass-1-billion-will-double-
by-2015, June
2015.

22. Marforio, C., Francillon, A., Capkun, S., Capkun, S.,
and Capkun, S. Application collusion attack on the
permission-based security model and its implications for
modern smartphone systems. Tech. Rep. 724,
Department of Computer Science, ETH Zurich, 2011.

23. Millen, J. K. Covert channel capacity. IEEE Symposium
on Security and Privacy 1987 (1987).

377

SESSION: SECRUITY TRICKS

24. Min Gyung Kang, Stephen McCamant, P. P., and Song,
D. Dta++: Dynamic taint analysis with targeted
control-flow propagation. NDSS’11 (2011).

25. Ongtang, M., McLaughlin, S., Enck, W., and McDaniel,
P. Semantically rich application-centric security in
android. 2009 Annual Computer Security Applications
Conference (2009).

26. Orthacker, C., Teufl, P., Kraxberger, S., Lackner, G.,
Gissing, M., Marsalek, A., Leibetseder, J., and
Prevenhueber, O. Android security permissions - can we
trust them? In MobiSec (2011), 40–51.

27. Percoco, N. J., and Schutle, S. Adventures in
bouncerland. https://www.youtube.com/watch?
v=-Kcy-ldh5h0, July 2012.

28. Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C.,
and Vigna, G. Execute this! analyzing unsafe and
malicious dynamic code loading in android applications.
NDSS (February 2014), 23–26.

29. Rajalakshmi Nandakumar, Krishna Kant Chintalapudi,
V. N. P., and Venkatesan, R. Dhwani : Secure
peer-to-peer acoustic nfc. In Proceedings of ACM
SIGCOMM, ACM (New York, NY, USA, 2013).

30. Rasthofer, S., Arzt, S., and Bodden, E. A
machine-learning approach for classifying and
categorizing android sources and sinks. NDSS (February
2014), 23–26.

31. Rastogi, V., Chen, Y., and Jiang, X. Catch me if you can:
Evaluating android anti-malware against transformation
attacks. Information Forensics and Security, IEEE
Transactions on 9, 1 (Jan 2014), 99–108.

32. Ritzdorf, H. Analyzing covert channels on mobile
devices. Master’s thesis, ETH Zurich, 2012.

33. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang,
H. J., and Cowan, C. User-driven access control:
Rethinking permission granting in modern operating
systems. 2012 IEEE Symposium on Security and
Privacy (2012), 224–238.

34. Schlegel, R., Zhang, K., and Zhou, X. Soundcomber: A
stealthy and context-aware sound trojan for
smartphones. Proceedings of the 18th Annual Network
and Distributed System Security Symposium (NDSS)
(2011), 17–33.

35. Team, G. L. D. Go launcher ex application.
https://play.google.com/store/apps/details?id=com.gau.
go.launcherex&hl=en, May 2015.

36. Templeman, R., Rahman, Z., Crandall, D., and Kapadia,
A. Placeraider: Virtual theft in physical spaces with
smartphones. NDSS (Sept. 2012).

37. Wang, T., Lu, K., Lu, L., Chung, S., and Lee, W. Jekyll
on ios: When benign apps become evil. In Proceedings
of the 22Nd USENIX Conference on Security, SEC’13,
USENIX Association (Berkeley, CA, USA, 2013),
559–572.

38. Wang, Y., Hariharan, S., Zhao, C., Liu, J., and Du, W.
Compac: Enforce component-level access control in
android. In Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy, CODASPY
’14, ACM (New York, NY, USA, 2014), 25–36.

39. “Wikipedia”. Hamming code — Wikipedia, the free
encyclopedia. http://en.wikipedia.org/wiki/
Hamming code, November 2013.

40. Wu, C., Zhou, Y., Patel, K., Liang, Z., and Jiang, X.
Airbag : Boosting smartphone resistance to malware
infection. NDSS (February 2014), 23–26.

41. Wu, Z., Xu, Z., and Wang, H. Whispers in the
hyper-space: High-speed covert channel attacks in the
cloud. In Proceedings of the 21st USENIX Conference
on Security Symposium, Security’12, USENIX
Association (Berkeley, CA, USA, 2012), 9–9.

42. Xu, F., Tan, C., Li, Q., Yan, G., and Wu, J. Designing a
practical access point association protocol. In
INFOCOM, 2010 Proceedings IEEE (March 2010), 1–9.

43. Xu, R., Saı̈di, H., and Anderson, R. Aurasium: Practical
policy enforcement for android applications. In
Proceedings of the 21st USENIX Conference on Security
Symposium, Security’12, USENIX Association
(Berkeley, CA, USA, 2012), 27–27.

44. yahoo. Yahoo weather application.
https://play.google.com/store/apps/details?id=
com.yahoo.mobile.client.android.weather&hl=en, May
2015.

45. Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., and
Wang, X. S. Appintent: analyzing sensitive data
transmission in android for privacy leakage detection. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & Communications Security, CCS ’13, ACM
(New York, NY, USA, 2013), 1043–1054.

46. Zhang, M. Appsealer : Automatic generation of
vulnerability-specific patches for preventing component
hijacking attacks in android applications. NDSS
(February 2014), 23–26.

47. Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P.,
Wang, X. S., and Zang, B. Vetting undesirable behaviors
in android apps with permission use analysis. In
Proceedings of the 20th ACM Conference on Computer
and Communications Security (CCS) (November 2013).

378

UBICOMP '15, SEPTEMBER 7–11, 2015, OSAKA, JAPAN

	Introduction
	Related Work
	Threat Model
	Trojan Horse Malware Design
	Example Trojan Application — Jog-Log
	Attack Variations

	Covert Channel Design
	Defense
	Stage One - Detection
	Stage Two - Treatment
	Technical Challenges and Implementation Details
	Limitations – Implicit Flow Taint Tracking

	Evaluation
	Covert Channels
	Defense
	Taint Propagation
	Implicit Flow Propagation
	Dynamic Switching

	Conclusion
	Acknowledgments
	REFERENCES

