
EDDL: A Distributed Deep Learning System for
Resource-limited Edge Computing Environment

Pengzhan Hao
Computer Science Department

Binghamton University
Binghamton, New York, USA

Yifan Zhang
Computer Science Department

Binghamton University
Binghamton, New York, USA

ABSTRACT

This paper investigates the problem of performing distributed deep

learning (DDL) to train machine learning (ML) models at the edge

with resource-constrained embedded devices. Existing solutions

mostly focus on data center environments, where powerful server-

class machines are interconnected with ultra-high-speed Ethernet,

and are not suitable for edge environments where much less power-

ful computing devices and networks are used. Due to the resource

constraint on computing devices and the network connecting them,

there are three main challenges for performing edge-based DDL: (1)

susceptibility to struggling workers, (2) difficulty of scaling up to a

large training cluster, and (3) frequent changes in training device

availability and capability. To address these challenges, we design

and implement EDDL, an edge-based DDL system, with ARM-based

ODROID-XU4 and Raspberry Pi 3 Model B boards. We evaluate the

prototype EDDL system by performing edge-based mobile malware

detection and classification on a large Android APK dataset. The

evaluation results show that EDDL can efficiently train deep learn-

ing models with consumer-grade embedded devices and wireless

networks while incurring small overhead.

ACM Reference Format:

Pengzhan Hao and Yifan Zhang. 2021. EDDL: A Distributed Deep Learning

System for Resource-limited Edge Computing Environment. In The Sixth

ACM/IEEE Symposium on Edge Computing (SEC ’21), December 14ś17, 2021,

San Jose, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3453142.3491286

1 INTRODUCTION

Edge-based DDL training is desirable. We advocate performing

DDL at the edge to train deep neural network (DNN) models due

to the following observations.

First, we observe that co-located mobile device users, such as

users within a university, an office campus, or a hospital, usually

share similar interests, exhibit similar behavior patterns, or even

are targeted by similar threats. Take mobile app preferences as an

example, social networking, entertainment, and gaming apps are

popular among university students; professionals from financial

institutions are likely to have apps related to work productivity,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEC ’21, December 14ś17, 2021, San Jose, CA, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8390-5/21/12. . . $15.00
https://doi.org/10.1145/3453142.3491286

finance, and their companies installed on their devices. Co-located

users may also be targeted by the same or similar security threats

as mobile apps are becoming increasingly susceptible to targeted

attacks [22, 55, 56], where malware are targeting specific groups of

users by masquerading as legitimate apps that are likely used by

the victims [5, 52].

Second, we observe that ML-based solutions that take training

data in a global manner are less effective to deal with localized

testing data than solutions that are generated based on training

data collected locally. This is because ML classification models

work best if the distributions of the testing data match those of the

training data. We present a motivation study which demonstrates

this observation in §3.

Based on the first two observations above, we argue that it is

advantageous to generateMLmodels by trainingwith data collected

locally from the same group of co-located users.

Third, most of the existing ML-based solutions require process-

ing and storing the training data collected from the users centrally

on the cloud. However, there are growing concerns on the trust-

worthiness of cloud when it comes to processing/storing user data

[3, 4, 17, 25, 54, 66]. Indeed, a series of recent user data leakage

incidents [13, 18, 27, 46] warrant prudent designs for user privacy

protection.

Because of the third observation above, we argue that it is de-

sirable to move storing/processing of user data and training ML

models from cloud to the infrastructures owned and trusted by the

users. The edge computing infrastructure, which takes advantage

of the computing resources at the edge of networks, is a natural

and ideal fit for this purpose.

We focus on embedded edge devices. The edge devices we aim

to utilize are the existing edge infrastructure devices, such as wire-

less access points and base stations, and end user devices, such

as smartphones and tablets, both of which are mostly embedded

devices. We do not consider dedicated servers deployed at the edge

for a couple of reasons. First, embedded edge devices are far more

universal than dedicated edge servers and are mostly underuti-

lized. Second, most of the existing DDL solutions focus on data

center environment where powerful server-class machines are in-

terconnected via ultra-high-speed Ethernet [1, 9, 14, 35, 48, 61].

These solutions are likely to well suit the environment with dedi-

cated high-performance edge servers. However, there have been

few works investigating the issues of training DNN models us-

ing embedded devices which are connected with consumer-grade

wireless networks. Therefore, our goal to investigate the practical

issues of supporting efficient DDL at the edge with resource-limited

embedded devices.

SEC ’21, December 14–17, 2021, San Jose, CA, USA Pengzhan Hao and Yifan Zhang

Challenges. To achieve the above goal, we design EDDL, a system

for DDL training by utilizing embedded edge devices. Like many

existing solutions, EDDL adopts the parameter server approach as

the way of coordinating the training nodes [8, 11, 14, 24, 35, 61].

With EDDL, edge devices participating a training job form a training

cluster. There are two roles for the training devices: worker and

leader. The training data is divided into shards such that worker

devices can concurrently work on their own shards of training

data using mini-batch Stochastic Gradient Descent (mbSGD) [36,

60], and synchronize updates of the model’s parameters to the

leader device. The leader device essentially works as a parameter

server [10, 23, 35, 37]: it performs aggregation of worker parameter

updates and sends back the new global parameters to the workers.

An epoch of training is said to be done when the whole set of the

training data has been trained on once. The training is repeated for

multiple epochs until a desirable model accuracy is achieved.

While EDDL share similarities with the existing DDL works,

it faces three unique challenges which stem from the resource

constraints of the edge devices and the underlying network.

• Challenge 1: EDDL is more susceptible to struggling workers than

existing solutions. Struggling workers are those which take longer

time to consume their shards of training data than the other workers.

They prolong the time needed for an epoch of training and thus

the whole training process. Edge-based DDL is impacted more by

struggling workers because of edge devices’ native workloads (such

as routing/switching workloads for wireless APs), which can exhibit

a large variance on different edge devices, and thus leaving a highly

variable amount of computing resource for the DDL training.

• Challenge 2: it is difficult for EDDL scale up a training cluster

because of the network bandwidth constraint at the leader device. With

the parameter server architecture, all worker devices transmit their

updated model parameters to the leader device for aggregation. As a

result, the network bandwidth capacity at the leader device becomes

a bottleneck of scaling up the number of worker devices. Compared

to cloud-based DDL systems, the bandwidth bottleneck is much

more significant for edge-based DDL systems like EDDL. This is

because cloud-based systems run in data center environment where

high performance computing nodes are connected via ultra-high-

speed Ethernet (e.g., commonly at hundred Gigabit level [32, 53]),

whereas mobile/edge devices have a much lower interconnecting

speed (e.g., 100 to 200 Mpbs of real-world speed with recent WiFi

standards [2, 47]).

• Challenge 3: EDDL needs to deal with training device changes more

often than traditional DDL systems. Here training device changes

refer to the cases like device joining or leaving a cluster and sudden

training capability decline/boost in training device. Due to the

resource constraints and mobility of the edge devices, dealing with

training devices changes is critical to EDDL’s design.

How EDDL addresses the challenges. To address the first chal-

lenge above (i.e., susceptibility to struggling workers), we design a

dynamic training data distribution mechanism with which shards

of training data are distributed to the workers by the leader dur-

ing run time. Compared with the majority of the existing solu-

tions, which statically partition training data among the workers

[8, 11, 14, 35, 61, 65], our mechanism can minimize the impact of

struggling workers on training time efficiency (§4.2).

To address the second challenge (i.e., network bandwidth bottle-

neck at the leader), we have three key designs (§4.3):

(1) We adopt synchronous parameter update (PU) by default. The

conventional wisdom suggests that fully asynchronous PU [9, 14,

35, 38, 45, 50] and asynchronous PU with bounded staleness [10,

11, 23, 61] are more time-efficient that synchronous PU because

individual training workers do not need to wait for other workers’

parameters to be synced to the leader. However, we find that sync

PU works better than the async counterpart for resource-limited

edge computing environment. The reason is that when compared

to sync PU, async PU shortens time needed for an epoch of training,

but it also increases the number of epochs needed for convergence.

As a result, it requires a large training cluster for async PU to out-

perform the sync counterpart. Unfortunately, in an edge computing

environment, before the training cluster can reach the size larger

enough to favor async PU, the network bandwidth at the leader

is saturated, meaning further increasing cluster size does not re-

duce, or even worsen, the time needed for an epoch of training. We

call the training cluster is saturated when the leader bandwidth is

saturated. In this case, further increasing the number of training

devices does not help improve the overall training time.

(2) We design a run-time method to detect if a training cluster is

saturated. For the reason described above, it is important to detect

if a training cluster becomes saturated as new workers are joining

it. We design a mechanism to accurately achieve such detection

during run time. To the best of our knowledge, we are the first to

study the issue of detecting cluster saturation in DDL training.

(3) We propose the mechanism of leader role splitting (LRS) to

help scaling up training cluster size after the leader’s bandwidth is

saturated. The idea is to adaptively split the leader role among

multiple workers such that each worker also works as the leader of

a subset of training devices. Our evaluation result shows that LRS

can significantly reduce overall training time when training cluster

becomes saturated.

To address the third challenge (i.e., need of dealing with training

device changes), we take the dynamics of devices, such as join-

ing/leaving the cluster and change of computation capabilities, into

consideration in the designs of training cluster formation, training

nodes management, and leader role transfer (§4.4).

Contributions. In summary, we make the following contributions

in this paper.

•We design and implement EDDL, an edge-based distributed deep

learning system for training DNN models. We identify and address

three main challenges of applying DDL in an edge computing en-

vironment with resource-limited computing devices. Departing

from the conventional wisdom, we demonstrate that synchronous

parameter update actually works better than the asynchronous

counter part in an environment with limited network bandwidth.

The mechanism of detecting training cluster saturation during run

time is first of its kind to the best of our knowledge.

•We implement a EDDL prototype system usingARM-basedODROID-

XU4 boards [21] and Raspberry Pi 3 Model B boards [49], and con-

duct a comprehensive set of experiments on a 16-worker-node

testbed to evaluate and study the practical issues and implications

of running EDDL.

EDDL: A Distributed Deep Learning System for Resource-limited Edge Computing Environment SEC ’21, December 14–17, 2021, San Jose, CA, USA

2 RELATED WORK

Distributed deep learning. There have been a plethora of re-

cent works which focus on improving distributed deep learning

(DDL) from theoretical perspective or on implementing and sup-

porting real-world DDL systems. Among these works, some adopt

a centralized approach, which uses parameter servers to coordinate

training workers and synchronize trained gradients/parameters

[1, 8, 9, 11, 14, 23, 35, 37, 61, 67], while others opt for a decentral-

ized approach [39ś41]. Some works exploit data parallelism by

employing multiple computing nodes to consume training data in

parallel [8, 11, 14, 35, 61], while others take advantage of model

parallelism which divides a large model into small parts so that

individual computing nodes can be used to process different parts

of the model [14, 29, 30, 61].

Federated learning and traditional DDL. Due to the high com-

puting resource demand for training DL models, most research

work of deep learning on embedded devices have been focusing on

DL inferences [20, 31, 42, 43, 62, 64]. Federated learning (FL), which

is a type of DDL proposed by Google [6, 44], is a promising way

of generating DL models on resource-constrained embedded de-

vices. There are three main differences between FL and traditional

DDL. First, a main motivation behind FL is to protect user data

privacy. To this end, FL generates ML models by training on private

user data on individual devices which can be heterogeneous, unbal-

anced, and non-independent and identically distributed (non-i.i.d.),

whereas traditional DDL assumes that the training datasets are

identically distributed and centrally stored. Second, training devices

in FL are usually connected via wide area networks (WANs), and are

loosely-coupled in the training. On the contrary, training nodes in

traditional DDL are connected via a high-speed local area network

(LAN), and are tightly-coupled in the training process, which is the

reason that traditional DDL incurs shorter training time than FL.

Third, training devices in FL are usually consumer-grade devices

and have lower computation capacity than those in traditional DDL

which are usually high performance servers.

EDDL is similar to traditional DDL in that it targets DDL sce-

narios where training devices are connected via the same edge

network infrastructure (e.g., a LAN) and can be tightly-coupled

to accomplish a training task. But it is also different because the

training devices in our scenarios are resource-limited consumer-

grade mobile devices. An example of such an scenario is that college

mobile users living in the same campus can face similar security

threats as mobile apps are becoming increasingly susceptible to

targeted attacks [22, 55, 56]. Those users may utilize the EDDL sys-

tem which coordinates the participating user devices to generate

mobile malware detection models based on the data collected lo-

cally within the campus. Since the users use the same campus LAN

for communication, they can be tightly-coupled to complete the

training tasks efficiently. One benefit of EDDL is that, as shown in

our motivation study (§3), DL models trained based on local data

perform better in dealing with local testing data (e.g., detecting the

targeted attacks to college app users) than those trained based on

the data collected globally.

EDDL is similar to FL in that both aim at using consumer-grade

mobile devices for DL model training. The differences are largely

the same as the ones between traditional DDL and FL as discussed

previously. Generally speaking, on-site edge-based DDL, such as the

one DDL implements, complements FL in that it can better serve

users who use the same edge network infrastructure and share

similarities like similar interests and behaviors, while FL is better

suited for users who are loosely-coupled over wide area networks.

In this paper, we focus on training nodes communication topology,

parameter update impact and efficiency in performing DDL within

resource-constrained edge environments. Our findings should also

apply to existing federated learning solutions if training nodes are

tightly coupled.

Synchrony for parameter update. For the DDL solutions which

adopts the centralized approach and utilizes data parallelism, they

use one of the three ways to perform parameter synchronization:

synchronous, fully asynchronous, and asynchronous with bounded

staleness. The synchronous approach synchronizes all the training

workers in a way that the training progress is moved forward in

a batch-by-batch manner [1, 8, 10]. With the fully asynchronous

approach, the parameter server aggregates a set of locally trained

parameters/gradients as soon as they are received [9, 10, 14, 19, 35,

45]. The asynchronous with bounded staleness approach limits the

progress difference between the fastest and the slowest training

workers so as to enable faster convergence [10, 11, 23, 61].

The existing works suggest that the fully asynchronous parame-

ter update approach and the asynchronous with bounded staleness

approach work better than the synchronous approach because

they are impacted less by struggling workers and scale better [9ś

11, 14, 23, 35, 38, 45, 50, 61]. However, our experiments suggest that

for DDL systems where bandwidth capacity of training nodes is

limited, sync PU is preferred over async PU in terms of training

time efficiency. We present the further analysis in §4.3 and §6.3

later.

Dealing struggling training workers. As indicted above, one

major challenge of DDL system that adopt the synchronous param-

eter update approach is dealing with the existence of struggling

workers. Chen et. al. [8] uses backup workers to replace struggling

workers. However, this approach may not work well in practice

because backup workers may not be available. Project Adam [9] and

Li et. al. [35] deals with struggling workers by simply terminating

them because losing a small of data does not affect the training.

This approach works well for large DNN models with large amount

of training data, but may not work well for small models like our

scenario.

3 THE MOTIVATION STUDY

A key observation motivating us to investigate edge-based DDL

training is that ML models trained based on data collected locally

(short as local models) perform better in local data inference than

those trained based on global training data (short as global models).

We have conducted a study to demonstrate this observation. In

this study, we examine how edge-based DDL training would help

improve the effectiveness of mobile malware defense solutions. The

existing ML-based solutions take app samples from users globally.

The universalness of the training data renders these solutions less

effective to deal with localized testing data, such as apps that are

used by users in the same community (e.g., users in the same univer-

sity, who are likely to share similar app interests and be targeted by

SEC ’21, December 14–17, 2021, San Jose, CA, USA Pengzhan Hao and Yifan Zhang

Table 1: Selection/distribution of APKs for CAU scenario 1 (for training local models L1 to L6).

Category APK APKs used when training

name (index) number L1 L2 L3 L4 L5 L6

Tools (1) 1,899 1,000 200 400 600 800 600

Entmt. (2) 1,651 800 1,000 200 400 600 600

Brain and Puzzle (3) 1,066 600 800 1,000 200 400 600

Lifestyle (4) 1,034 400 600 800 1,000 200 600

Education (5) 835 200 400 600 800 1,000 600

Total 6,485 3,000 3,000 3,000 3,000 3,000 3,000

(a) Benign APKs

Family APK APKs used when

name (index) number training L1 to L6

Mecor (3) 1,820 875

Youmi (4) 1,301 625

Fusob (5) 1,277 613

Kuguo (6) 1,199 576

BankBot (7) 648 311

Total 6,245 3,000

(b) Malware APKs

Table 2: Selection/distribution of APKs for CAU scenario 2 (for training local models SL1 and SL2).

Category APK APKs used when APKs used when

name (index) number training SL1 training SL2

Entmt. (2) 1,651 360 800

Education (5) 835 360 250

Communication (14) 583 360 250

Music & Audio (16) 534 360 250

Social (17) 465 360 250

Total 4,068 1,800 1,800

(a) Benign APKs

Family APK APKs used when

name (index) number training SL1 and SL2

Fusob (5) 1,277 543

Kuguo (6) 1,199 510

BankBot (7) 648 276

Jisut (8) 560 238

DroidKungFu (9) 546 233

Total 4,230 1,800

(b) Malware APKs

0 10 20 30 40 50 60 70

0

500

1000

1500

2000

2500

3000

3500

N
u

m
b

e
r

o
f

A
P

K
s

in
 t

h
e

 f
a

m
ily

/c
a

te
g

o
ry

Index of malware families &

benign-ware categories (starting from 1)

 Malware families

 Benign APK categories

Figure 1: Distributions of malware family sizes and benign

APK category sizes.

the same security threats). We simulate edge-based mobile malware

defense scenarios where malware detection/classification (d/c for

short) models are constructed by training on app data collected

from the users of the same community.

The Android APK dataset. Our study is based on a large Android

app dataset, which consists of 16,710 malware APKs and 16,425

benign APKs. The malware APKs are obtained from the Android

Malware Dataset [58], and are classified into 70 malware families.

The benign APKs were crawled from Google Play during the period

from April to July 2014, and can be put into 30 categories based on

app functionalities (e.g., News, Shopping, Finance, etc.). We index

all the malware families in an ascending order of family size (i.e.,

number of APKs in the family), and did the same thing for all the

benign APK categories. Figure 1 shows the distributions of malware

family sizes and benign APK category sizes.

PerNet: a deep neural network formobilemalware detection

and classification. We design a multilayer perceptron (MLP) [59]

based DNN, which is named łPerNetž because it determines whether

an app is a malware based on the permissions used in the app. The

input to PerNet is the subject APK’s Boolean vector of Android

permissions. PerNet examines all the permissions defined by the

Android system, which are 427 in total. Therefore, there are 427

neurons in the input layer. The input layer connects to five fully-

connected hidden layers, whose number of neurons are 512, 512,

256, 256, and 128 respectively. The output layer has 71 neurons,

which contain the Boolean classification results for the 71 classes

(i.e., the 70 malware families and the benign class). The activation

function used in PerNet is rectified linear unit (ReLU) [7].

Generating the local models. We simulate the scenarios of app

usage in different communities based on which local malware d/c

models are generated. Since users from the same community are

likely to use similar types of apps, we select several benign APK

categories (out of the 30 categories) to simulate the commonly used

app types in a community. We also choose several malware families

(out of the 70 families) to simulate the malware attacks targeting the

users in the community. Specifically, we simulate two community

app usage (short as łCAUž below) scenarios as follows.

• For CAU scenario 1 (summarized in Table 1), we pick the five

largest benign categories, which together have 6,485 APKs, and

select 3,000 of them for training local models. To match the total

number of APKs in the five benign categories, we choose five mal-

ware families, which contain 6,245 APKs in total, and also select

3,000 of them in training local models. To evaluate the effects of

different training data distributions on malware d/c accuracy, we

generate six local models (L1 to L6), of which the 3,000 training

benign APKs follow different distributions among the five benign

categories. For example, the 3,000 benign APKs are linearly dis-

tributed among the five categories when training local models L1 to

L5. For the local model L6, the 3,000 benign APKs are evenly divided

among the 5 categories. All the 6 local models share the same set of

EDDL: A Distributed Deep Learning System for Resource-limited Edge Computing Environment SEC ’21, December 14–17, 2021, San Jose, CA, USA

Table 3: Inference testing results of CAU scenario 1 and 2.

CAU scenario 1 CAU scenario 2

L1 L2 L3 L4 L5 L6 Global SL1 SL2 Global

Classification accuracy 99.0% 98.97% 98.94% 98.95% 98.95% 98.94% 96.93% 99.67% 99.72% 95.37%

Classification recall 97.97% 97.7% 97.83% 97.83% 97.85% 97.83% 93.75% 99.35% 99.45% 90.89%

Classification precision 100% 100% 100% 100% 100% 100% 100% 100% 100 % 100%

Detection accuracy 100% 100% 100% 100% 100% 100% 100% 99.94% 99.94% 99.94%

3,000 training malware APKs, which are randomly chosen from the

five malware families. We select training APKs in the above way

because for the same set of malware APKs, the detection accuracy

may vary with the environment they are targeting. Different envi-

ronments can have different mixtures of benign APKs, depending

on the interests of the community.

• For CAU scenario 2 (summarized in Table 2), we simulate app

usage in schools. We select five benign app categories which are

commonly used by students, and use 1,800 APKs from these cate-

gories for training the local models. Five malware families whose

total number of APKs match that of the five benign categories are

selected to train the local models. Two local models (SL1 and SL2)

are generated for the scenario 2: SL1 is trained on benign APKs

which are uniformly distributed among the five categories, and

SL2’s training benign APKs are dominated by one benign category.

Similar to CAU scenario 1, the training malware APKs are randomly

chosen from the five malware families.

Local testing data. The local testing data are drawn from the

benign categories and malware families which are associated with

the CAU scenarios. We randomly choose 20% from each of these

categories/families that were not used in the training process. As

a result, for CAU scenario 1, we select 2,544 APKs (1,297 benign

and 1,247 malware) as the testing APKs; for CAU scenario 2, 1,654

APKs (814 benign, 840 malware) are selected as the testing APKs.

Generating the global model. The global mode is trained based

on all the APKs in the dataset except the testing APKs.

Study results. Table 3 presents the simulation study results. An

app is considered to be correctly classified if the PerNet model cor-

rectly puts the app into one of the 71 classes (i.e., benign and the

70 malware families). An malware app is considered to be correctly

detected if the model labels it to one of the malware families (regard-

less the correctness of the labeling). An benign app is considered

to be correctly detected if the model rules it as benign.

We can see from Table 3 that for CAU scenario 1, the six lo-

cal models (L1 to L6) enjoy a classification accuracy around 99%,

whereas the global model’s classification accuracy is 96.9%. For

CAU scenario 2, both local models (SL1 and SL2) achieve more than

99.6% of classification accuracy, which is over 4% higher than the

global model. All the local models have significant higher classi-

fication recall than global model, while both the local and global

models achieve 100% classification precision. This indicates that

local models perform better than global models on correctly classi-

fying true malware targeting the communities, but both are unlikely

to misclassify a benign app as malware.

It is worth noting that there have been several recent studies

which achieve personalized DL models via different approaches,

An EDDL training cluster

Mobile/edge device functioning
as the training leader

Mobile/edge device functioning
as a training worker

Training job dispatch &
parameter synchronization

Training task & training data

L

W1 W2 W3 W4

EDDL
manager

TDE
storage

Figure 2: The basic setup of EDDL’s distributed training.

such as meta-learning [28], multi-task learning [51, 63] and trans-

fer learning [57]. These solutions usually first train a global model

which is then adapted to individual users based on their local data.

EDDL complements these solutions in that it does not require train-

ing of global models which may not be feasible due to lack of global

data. With EDDL, local-community-oriented DL models can be

generated based on the data collected locally.

4 EDDL SYSTEM DESIGN

4.1 The setup of EDDL’s distributed training
The basic setup of EDDL’s distributed training is shown in Figure

2. There are three main entities: the EDDL training cluster, the

EDDL manager, the training data entry storage.

The EDDL training cluster consists of edge or mobile devices

that are participating in a training task. In the following, we refer

to these devices as the training nodes. There are two roles in for the

training nodes: leader and worker. As introduced in §1, individual

worker nodes train on their own portions of training data entries

(TDEs) using mini-batch Stochastic Gradient Descent (mbSGD) [36,

60], and synchronize the updated model parameters to the leader

node. The leader node acts as a parameter server [10, 23, 35, 37]

which aggregates and sends back the parameters received from

the workers. We refer to the number of worker nodes in a training

cluster as the size of the cluster. In the example shown in Figure 2,

the training cluster has a size of four.

The EDDLmanager performs three tasks: working as the portal

device to collect training data entries (TDEs) from users within the

same community, initializing training tasks, and relaying TDEs to

the training cluster during a training. Edge infrastructure devices,

such as wireless APs, are ideal to work as EDDL managers because

the EDDL manager needs to communicate to the leader device of a

training cluster, which can be any user device, and requires minimal

amount of computation.

A Training data entry (TDE) is a piece of labeled data which

consists of a feature vector and a classification label. Take the the

edge-based malware defense (§3) as an example, the feature vector

of a TDE is the permission vector of an app, and the label tells

SEC ’21, December 14–17, 2021, San Jose, CA, USA Pengzhan Hao and Yifan Zhang

2

1

3
4

6

8

L
Training task dispatch
(training metadata)

TDE range for Wi's
next training jobRequest TDEs

TDEs requested

New local parameters

 Param aggregation7
Updated global params

Repeat for each untrained
batch of TDEs

Wi

Leader Worker

 Local mbSGD-based
training on the TDEs

5

EDDL
manager

TDE
storage

Figure 3: Dynamic training data distribution in EDDL.

whether the app is benign or the type of malware. Another example

is that for an edge-based news recommendation, the feature vector

of the TDE could be user preferences and time when a piece of

news is viewed, and the label is the headline of the news. The TDE

storage stores TDEs contributed by users of the same community.

Compared to cloud storage, the TDE storage is owned and trusted

by the community users.

4.2 Dynamic training data distribution

Existing distributed DNN training solutions usually statically par-

tition training data among the training workers [8, 11, 14, 35, 61,

65]. The static partitioning approach is unlikely to work well for

EDDL because of two reasons. First, as discussed previously, training

workers in our scenario have high variation in available computing

resource. As a result, static training data partitioning can lead to

large differences in time needed for individual workers to finish

one epoch of training (i.e., to consume their partitions of data once),

which would slow down the overall training significantly. Second,

static training data partitioning cannot well deal with training node

changes, such as nodes leaving and joining, which is not uncommon

in our scenario.

To address the above problems, EDDL adopts a dynamic training

data distribution approach, which allows the leader to distribute

training data based on the training progresses on different work-

ers. The overall training workflow with the dynamic training data

distribution mechanism is shown in Figure 3. The EDDL manager

initiates a training task, whose goal is to generate a new or updated

malware d/c model, by dispatching the training metadata, which

contains the indexes of all the TDEs, to the leader of a training

cluster (step 1). The leader then dispatches training jobs, each of

which requests a worker to perform the forward pass and backprop-

agation on one batch of training data as in mini-batch stochastic

gradient descent (mbSGD) [36, 60]. For each worker which is ready

for a new training job, the leader sends it the indexes of a TDE

batch (step 2). The worker then fetches the batch of TDEs from

the EDDL manager (steps 3 and 4), and performs local training

on them (step 5). After the local training is completed, the worker

sends the new local parameters to the leader (step 6), which aggre-

gates them with other worker’s latest local parameters or the latest

global parameters (depending on (a)synchrony of the aggregation)

to generate the updated global parameters (step 7), and sends them

back to the worker. The steps 2 to 8 above repeat until a epoch

of training is completed (i.e., the entire set of TDEs are trained on

once). Multiple epochs of training are needed to obtain a model

with desired accuracy.

The above design dynamically dispatches training data range

for each training job to workers based on their training progresses

instead of statically partitioning the data among them. As a result,

fast-working workers do not need to wait for struggling work-

ers to finish their shards of data in an epoch of training, which

consequently lead to improved training time efficiency.

To reduce the overhead of distributing training data in real time,

we adopted an optimization in our system implementation that

after the leader device receives the indexes of all the TDEs from

the EDDL manager (i.e., step 1), it broadcasts this info to all the

workers. Each worker then prefetches the whole set of TDEs before

the training process starts. This way, each worker device can start

the local training right after receiving info of the TDE batch it

needs to work on from the leader (i.e., step 2), and therefore to

forego steps 3 and 4 to speed up the whole training process. Here

prefetching the entire training dataset is a feasible optimization

for edge-based DDL scenarios due to two reasons. First, it is a

one-time operation which occurs before the training starts and

thus has little impact on overall training time. Second, compared

to conventional DDL which trains ML models based on a massive

amount of data collected globally, the training data size of edge-

based DDL is relatively small because the data are collected from

only one local community.

4.3 Scaling up EDDL training cluster size

As discussed in §1, a challenge for EDDL to apply DDL training in

an edge environment is the difficulty of scaling up the number of

training nodes in a cluster. Our approach of addressing this chal-

lenge is three-fold: first, we adopt synchronous parameter update

as the default approach for aggregating parameter updates from

workers; second, we design a practical method to detect if a training

cluster is saturated when scaling up its size; third, we propose the

approach of adaptive leader role splitting to further scale up train-

ing cluster size after cluster saturation is reached. In the following,

we first introduce the concept of synchronous and asynchronous

updates, and then the three designs of scaling up EDDL training

cluster size.

(A)synchrony of parameter update. The operations performed

in steps 6 , 7 and 8 in Figure 3 are referred to as parameter update

(PU). EDDL supports two types of PU: synchronous and asynchro-

nous. With synchronous PU, after the leader dispatches training

jobs to the workers, it waits for all the workers’ new local param-

eters before performing aggregation on them and sending back

the new global parameters. With asynchronous PU, whenever the

leader receives local parameters from a worker, it aggregates them

with the latest global parameters to generate new ones and sends

them back to the worker. If the leader receives a worker’s local

EDDL: A Distributed Deep Learning System for Resource-limited Edge Computing Environment SEC ’21, December 14–17, 2021, San Jose, CA, USA

parameters while an aggregation process is under way, it restarts

the aggregation to include the newly-arrived parameters.

EDDL adopts synchronous PU by default. The reason of this

design is that, according to our experiments (§6.3 later), we find

that in distributed deep learning systems where bandwidth capacity

of training nodes is limited, sync PU is preferred over async PU

in terms of training time efficiency. Our finding here contradicts

many recent works which suggest sync PU is inferior to fully async

PU [9, 14, 35, 38, 45, 50] or async PU with bounded staleness [10,

11, 23, 61]. We analyze the cause of the disagreement below.

With the parameter server architecture, all the worker nodes in

a training cluster send their updated model parameter to the leader

node for aggregation. As the number of worker nodes increases, the

network capacity at the leader node will become saturated, after

which time further increasing worker nodes would only deteriorate

the overall training time because of the fast increasing network

time for parameter synchronization. We call the number of workers

in a training cluster when the leader node’s network bandwidth is

saturated the łsaturation sizež of the training cluster.

In the meantime, although async PU takes less time in one epoch

of training (łepoch timež for short) than sync PU, both our exper-

iment results and the recent works suggest that async PU needs

to take more epochs to converge (i.e., to reach the desired training

accuracy). For a given training cluster, async PU incurs less over-

all training time (which is the product of epoch time and epoch

number) than sync PU when the cluster size is large enough, such

that the reduction in epoch time outweighs the disadvantage in

epoch number. We name this sufficiently large cluster size with

which async PU incurs less overall training time than sync PU the

łinflection sizež1 of the training cluster.

For edge-based DDL, the inflection size of a training cluster

is likely to be notably higher than the cluster’s saturation size

because of the limited network bandwidth at the leader node. In

other words, when scaling up the training cluster size, the leader

node’s bandwidth is saturated long before the inflection size is

reached. As a result, async PU usually has worse performance than

sync PU in terms of overall training time. The experiment results

which support the above analysis will be presented later in §6.3.

Detecting training cluster saturation size. Since increasing the

number of worker nodes in a training cluster after the cluster’s

saturation size is reached would deteriorate the overall training

time, it is important to be able to detect when saturation size is

reached when scaling up the size of the cluster. However, detecting

training cluster saturation size is not trivial because the saturation

size varies as the available network bandwidth at the leader node

changes. Therefore, an online approach is needed rather than an

offline one.

We observe that before a training cluster is saturated, the follow-

ing inequation should hold:

Bl >
Sparam

tsync
× n, (1)

1It is named this way because when the number of worker devices in the training
cluster is smaller than the cluster’s inflection size, sync PU achieves better overall
training time than async PU. When there are more worker devices in the training
cluster than the cluster’s inflection size, and async PU performs better.

Figure 4: Leader role splitting example in a 5-node cluster.

where Bl is the leader’s available network bandwidth, n is the

number of workers, Sparam is the size of parameters which are

needed to be synchronized for a batch of training, and tsync is the

average time needed for parameter synchronization in a batch of

training. The above inequation means before cluster is saturated,

Bl has surplus after accommodating bandwidth consumption from

the workers.

We define bandwidth usage coefficient (BUC) as:

BUC =
n

tsync
(2)

According to the inequation (1), the following should hold before

saturation is reached:

BUC <
Bl

Sparam
, (3)

which means if a new worker were added, the new BUC would

be larger than the current one. Therefore, our way of detecting

cluster saturation as workers are added is allowing leader node to

monitor how the BUC value changes after adding a new worker:

if the new BUC is larger than the old value, it means the cluster

has not yet been saturated; otherwise the cluster is saturated. It

is worth noting that the value of tsync can be easily obtain by the

leader node during runtime. The experiment later in §6.4 shows

that the runtime metric of BUC is able to accurately detect when

the saturation size is reach while increasing the size of a training

cluster.

Adaptive leader role splitting. One of our ongoing efforts is

investigating how to adjust the topology of a training cluster after

the saturation size is reached, such that further scaling up the

cluster can be beneficial. Our current design adopts a two-level

tree structure where the leader locates at the root level and new

workers are always directly connected to the leader. The drawback

of this design is that cluster saturation size is determined by the

available bandwidth of a single node (i.e., the leader). A promising

direction is to adaptively (e.g., when leader’s network bandwidth is

saturated) split the current leader role among several worker nodes

which can then work as łsub-leadersž. Figure 4 shows an example

of leader role splitting (LRS) in a training cluster with 5 devices. In

the example, the leader device (PD5) splits its leader role among

PD3 and PD5 to allow them to work as sub-leaders which aggregate

parameters for a portion of the workers, and relays the partially-

aggregated parameters to the top leader for final aggregation. In

order to enable LRS without requiring more physical devices, PD3

and PD5 also work as workers (each of which is implemented as

a separate process from the sub-leader process). The preliminary

SEC ’21, December 14–17, 2021, San Jose, CA, USA Pengzhan Hao and Yifan Zhang

Figure 5: Implementation of leader and worker nodes.

evaluation result (§6.5) shows that LRS is a promising approach to

scaling up training cluster size for edge-based DDL where training

cluster saturation size is usually small.

4.4 Training cluster formation and training
nodes management

Owners of edge devices have strong incentives to participate in

the distributed training for the following three reasons. First, the

edge devices may greatly be benefited by using the trained models.

Second, organizations such as companies and schools, which can

be benefited most by edge-based DDL solutions (such as the one

presented in §3), may mandate their employees to participate. Third,

the training can be done while the edge devices are idle, which

alleviates the concern of training interfering normal workloads on

the devices.

Formation of a training cluster is initiated by the EDDL manager

when it has collected sufficient TDEs. Edge devices that are selected

to participate in the training process send their hardware specifi-

cation and runtime resource statistics, such as CPU and network

interface utilization, to the EDDL manager, which uses such infor-

mation to pick a device as the leader of the training cluster. The

leader node of the training cluster is responsible for training nodes

management which has two main goals. First, the leader node needs

to be aware of available computation resource changes on different

training nodes, so that the leader role can be transferred to the node

with the most abundant available computation resource. Second,

training node dynamics, such as joining and leaving the training

cluster, need to be properly managed. This goal is easy to achieve

because training data is dynamically distributed to workers in a

batch-based manner and workers synchronize model parameters

with the leader after each batch of training. As a result, the leader

does not need to maintain states for workers. Each worker can be

treated the same regardless when it joined the cluster.

5 EDDL SYSTEM IMPLEMENTATION

Prototype system hardware. We implemented a prototype sys-

tem using two single-board computer (SBC) embedded platforms

which have similar computation capability as today’s edge de-

vices, such as smartphones and access points. One such platform

is ODROID-XU4 [21], which is equipped with a 2.1/1.4 GHz 32-bit

ARM big.LITTLE octa-core processor and 2GB memory. The other

platform is Raspberry Pi 3 (RP3) Model B board [49], which comes

with an ARM 1.2 GHz 64-bit quad-core processor and 1 GB memory.

Software environment. The operating system running on the

above SBC platforms is Ubuntu 18.04 with Linux kernel 4.14. We

use Dlib [16], a C++ library which provides implementations for a

wide range of machine learning algorithms and tools, to implement

the core deep learning functionalities, such as SGD. We choose the

Dlib library because it is written in C/C++, and thus can be easily

and natively used by embedded devices for good performance.

Leader/worker node implementation. Figure 5 demonstrates

the implementations of leader and worker nodes. To support dy-

namic leader role transfer, the implementation logic of both leader

and worker are carried in each ODROID and RP3 device, such

that all training nodes can work as leader or worker depending on

runtime needs.

The implementation logic of both leader and worker nodes con-

sists of multiple threads, each of which is implemented as a POSIX

thread to complete a specific functionality. For a new worker node

to join a training cluster, the control thread in the worker node

sends a join request to the control thread in the leader node (step 1).

For each new worker node, the leader launches a synchronization

thread, through which it starts a new job for the worker by sending

the indexes of a batch of TDEs to the worker’s control thread (step

2). The worker then fetches the said TDEs from EDDL manager

and stores them locally (step 3). Our implementation adopts the op-

timization mentioned before, which allows worker node to prefetch

the entire set of TDEs, and thus avoids the need of fetching TDEs

from EDDL manager for every new job. The worker control thread

also communicates its status (e.g., CPU and network bandwidth

utilization) to the leader thread, which can use the info to manage

training nodes (e.g., to initialize leader role transfer). When a new

batch of TDEs become available, the training thread within the

worker starts the forward and backward training passes on the new

TDEs, and stores the resulted (local) parameters (step 4), which

are fetched and synchronized to the leader node by the worker’s

synchronization thread (step 5). The leader node is responsible for

aggregating the locally trained parameters from different workers

to generate the latest global parameters (step 6). For synchronous

PU, the leader waits for the local parameters from all the work-

ers until aggregating them to generate the global parameters. For

asynchronous PU, the leader aggregates the newly received local

parameters with the current global parameters to generate the latest

ones without waiting for other workers. Once new global param-

eter become available, the leader sends them back to individual

workers through the corresponding per-thread sync thread (step

7). In our implementation, the TDE indexes of a new training job

are piggybacked when leader sends updated global parameters back

to workers (i.e., the info sent in steps 2 and 8 is delivered with

one network message). After worker node receives the latest global

parameters and the indexes of the next batch of TDEs, it starts a

new training cycle by repeating the steps 2 to 7 above.

EDDL: A Distributed Deep Learning System for Resource-limited Edge Computing Environment SEC ’21, December 14–17, 2021, San Jose, CA, USA

(b)

1 2 4 6 8 10 12 14 16
0

2000

4000

6000

8000

10000

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Number of workers
1 2 4 6 8 10 12 14 16

0

400

800

1200

1600

2000

 SYNC param update - synchronization (network) time

 SYNC param update - local training time

 ASYNC param update - synchronization (network) time

 ASYNC param update - local training time

Number of wokers

T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

(a)

Figure 6: Time for training a batch of 128 TDEs (y-axis)

with training clusters of difference sizes (x-axis). (a) Cluster

node’s network bandwidth is 1000 Mbps. (b) Cluster node

network’s network bandwidth is 100 Mbps.

1 2 4 6 8 10 12 14 16

65%

70%

75%

80%

85%

90%

95%

100%

M
o
d
e
l
te

s
t
a
c
c
u
ra

c
y

Number of workers

 SYNC - 10 epochs

 ASYNC - 10 epochs

 SYNC - 20 epochs

 ASYNC - 20 epochs

 SYNC - 30 epochs

 ASYNC - 30 epochs

Figure 7: Model test accuracy after 10/20/30 epochs of train-

ing (y-axis) with training clusters of different sizes (x-axis).

6 EVALUATION AND INSIGHTS

We conducted experiments to evaluate the real-world performances

of our EDDL prototype system.

Training devices. The training nodes used in the evaluation ex-

periments are ODROID XU4 devices.

Network setting. To enable controllable network bandwidth be-

tween leader and worker devices, the training nodes are connected

via an Ethernet switch, which emulates wireless communication

speeds by varying the bandwidth.

DNNs and training datasets. We conducted experiments on two

DNN models and their associated datasets. The first DNN is the

PerNet introduced in §3. We trained PerNet using 6,656 TDEs (i.e.,

TDEs derived from 6,656 APKs which were selected following the

same way of training the local model L1 of the CAU scenario 1 (see

Table 1 in §3 previously). The size of the 6,656 TDEs is 6.3 MB. As a

comparison, the size of all the 33,135 TDEs used in training/testing

the global model (§3) is about 30.7MB. The testing APKs were also

selected using the same way as described in §3. The second DNN

is the LeNet [33] and was trained using the MNIST dataset [34]

which has about 60,000 grey-scaled images of handwritten digits

with about 47 MB in total. Both of the datasets chosen have around

1 2 4 6 8 10 12 14 16
0

300

600

900

1200

1500

1800

2100

O
v
e

ra
ll

tr
a

in
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

Number of workers

 SYNC - 10 epochs

 ASYNC - 10 epochs

 SYNC - 20 epochs

 ASYNC - 20 epochs

 SYNC - 30 epochs

 ASYNC - 30 epochs

Figure 8: Training time for 10/20/30 epochs (y-axis) with

training clusters of different sizes (x-axis) (1000 Mbps net-

work bandwidth).

1 2 4 6 8 10 12 14 16
0

500

1000

1500

2000

2500

3000

Number of workers

O
v
e

ra
ll

tr
a

in
in

g
 t

im
e

(s
e

c
o

n
d

s
) SYNC - 10 epochs

 ASYNC - 10 epochs

 SYNC - 20 epochs

 ASYNC - 20 epochs

 SYNC - 30 epochs

 ASYNC - 30 epochs

Figure 9: Training time for 10/20/30 epochs (y-axis) with

training clusters of different sizes (x-axis) (100 Mbps net-

work bandwidth).

several thousands to tens of thousands data entries, which match

the scale edge-based DDL scenarios where models are trained based

on the data collected from local communities.

The findings presented in the following are supported by the

experiment data on both PerNet and LeNet. Due to the space limit,

we use the data obtained from the PerNet experiments to discuss

the findings.

6.1 Batch training time

Figure 6 shows the average time needed to train a batch of 128

TDEs, which consists of local training time and (parameter) sync

time, with different number of workers. The measurement was per-

formed under two network bandwidth settings for cluster nodes:

1000 Mbps and 100 Mbps. From the figure we can see that worker’s

local training time stays unchanged regardless parameter update

(PU) synchrony or cluster node bandwidth setting differences. The

figure shows the following results about the relationship between

batch training time PU synchrony.

• Async PU incurs smaller batch training time than sync PU. This

is because sync PU requires each worker to wait for the leader to

SEC ’21, December 14–17, 2021, San Jose, CA, USA Pengzhan Hao and Yifan Zhang

1 2 4 6 8 10 12 14 16

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Tr
ai

ni
ng

 ti
m

e
ra

tio

Number of workers

 Leader node b/w: 1000 Mbps
 Leader node b/w: 100 Mbps

Figure 10: Training time ratio of the ASYNC-30 model over

the SYNC-20 model (i.e., ASYNC−30
SYNC−20 training time ratio) (y-

axis) with training cluster with different sizes (x-axis).

aggregate parameter updates from the entire cluster before start-

ing the next batch of training, while async PU does not have this

requirement.

• The leader node’s network bandwidth capacity is shared among

the workers. Thus, after the leader’s bandwidth is saturated, adding

more workers would proportionally increase sync time as well as batch

training time. Figure 6 also shows that batch training time with

cluster node bandwidth of 100 Mbps is significantly higher than

that with cluster node bandwidth of 1000 Mpbs, especially for clus-

ters with more workers. The difference is caused by the increase of

(parameter) sync time. For example, when 16 workers are used, the

ratios between sync time and batch training time for sync/async PU

are 0.88/0.87 with bandwidth of 100 Mbps, compared to 0.38/0.07

with bandwidth of 1000 Mbps.

6.2 Model accuracy

Figure 7 shows the results of model test accuracy after 10, 20 and

30 epochs of training with different number of workers. We can see

the following results from the figure.

• It requires more epochs of training for async PU to converge (i.e., to

reach a desired model test accuracy) than sync PU. For example, the

models trained with async PU after 30 epochs (i.e., the łASYNC-30

epochsž line) have almost the same accuracy as the models trained

with sync PU after 20 epochs (i.e., the łSYNC-20 epochsž line). This

finding is consistent with recent literature [1, 8, 12].

• Sync PU achieves better model test accuracy than async PU under

the same condition (i.e., same number of training epochs and same

training cluster size). For example, models with SYNC-30 achieve

notably higher accuracy than those with ASYNC-30 when the clus-

ter size is larger than 8.

•With the same number of epochs of training, model test accuracy de-

clines as size of the training cluster increases, but the variation range

is much smaller when the model is trained for more number of epochs.

In other words, it requires more epochs of training for large training

clusters to reach a desired model test accuracy. For example, after

20 epochs of training using async PU (i.e., ASYNC-20), an accuracy

of 95% can be achieved with a training cluster of 4 workers, while

only an accuracy of 88% is achieved with a 16-worker cluster.

(b)

1 2 4 6 8 10 12 14 16
1.2

1.6

2.0

2.4

2.8

3.2

Cluster saturation detected when
there are 6 workers for sync PUBa

nd
w

id
th

 u
sa

ge
 c

oe
ffi

ci
en

t

Number of workers

 SYNC param update
 ASYNC param update

Cluster saturation detected when
there are 4 workers for aync PU

1 2 4 6 8 10 12 14 16
0

3

6

9

12

15

18

Ba
nd

w
id

th
 u

sa
ge

 c
oe

ffi
ci

en
t

Number of workers

 SYNC param update
 ASYNC param update

No cluster saturation detected for
both sync PU and async PU

(a)

Figure 11: Bandwidth utilization ratio (BUC) (y-axis) vs. clus-

ter size (x-axis). (a) When cluster node’s bandwidth is set to

1000 Mbps, no cluster saturation with both sync and async

PU. (b)When cluster node bandwidth is set to 100 Mbps, clus-

ter saturation is detectedwhen cluster size increases to 6 and

4 for sync PU and async PU respectively.

6.3 Overall training time

Figure 8 and Figure 9 demonstrate how overall training time is

affected by the different factors. We have the following finding

about overall training time and cluster size.

• Increasing number of workers is helpful for reducing overall training

time until network bandwidth of the leader node becomes a bottleneck.

For example, as shown in Figure 9, with cluster node network

bandwidth set at 100 Mbps, increasing training cluster size beyond

6 does not only does not reduce, it may also increase, the overall

training time (e.g., the overall training times with the 16-worker

cluster are larger than those with smaller clusters)

• In DDL systems where network bandwidth of the training nodes is

limited, sync PU is preferred over async PU in terms of training time

efficiency. For example, recall that in Figure 7, it was shown that the

model trained with async PU for 30 epochs (short as łASYNC-30

modelž below) achieves almost the same test accuracy as the model

trained with sync PU for 20 epochs (short as łSYNC-20 modelž

below) under training clusters of different sizes. Here, according to

Figure 8 and 9, ASYNC-30 model needs more time than SYNC-20

model in most of the cases.

We find that the time difference for training SYNC-20 andASYNC-

30 models actually varies depending on network bandwidth of the

leader as well as size of the training cluster. Figure 10 plots the

training time ratio of ASYNC-30 model over the SYNC-20 model

for training cluster of different sizes. We can see that when the

leader node’s network bandwidth is limited (i.e., 100 Mbps), the
ASYNC−30
SYNC−20 training time ratio decreases toward 1 as number of

workers increases from 1 to 4. However, when there are more than

4 workers in the training cluster, the ASYNC−30
SYNC−20 training time ratio

increases as cluster size grows. The reason is that network band-

width of the leader is saturated when there are 4 workers (i.e., the

saturation size of the cluster is 4). Thus, adding more workers would

cause a significant increase in network sync time when training

a batch of TDEs. The increase of batch training time in this case

overshadows the benefit brought by adding more workers (which

is reducing the number of batches to be trained by each worker).

EDDL: A Distributed Deep Learning System for Resource-limited Edge Computing Environment SEC ’21, December 14–17, 2021, San Jose, CA, USA

(b)

4 8 12 16
0

200

400

600

800

1000

1200

 Without leader role splitting
 With leader role splitting
 Time reduction percentage

O
ve

ra
ll

tra
in

in
g

tim
e

(s
ec

on
d)

Number of workers

-10%

0%

10%

20%

30%

40%

50%

60%

70%

Tr
ai

ni
ng

 ti
m

e
re

du
ct

io
n

pe
rc

en
ta

ge

4 8 12 16
50%

60%

70%

80%

90%

100%

M
od

el
 te

st
 a

cc
ur

ac
y

Number of workers

(a)

Figure 12: Leader role splitting’s effect on (a)Model accuracy,

and (b) Training time.

0 1 2 3
0

400

800

1200

1600

O
ve

ra
ll

tra
in

in
g

tim
e

(s
ec

on
ds

)

Number of RP3 workers

 Static training data partition
 Dynamic training data distribution
 Improvement percentage

0%

5%

10%

15%

20%

25%

30%

35%

Im
pr

ov
em

en
t p

er
ce

nt
ag

e

Figure 13: TDEs dynamic distribution vs. static partition.

6.4 Training cluster saturation size detection
Figure 11 shows how the BUC value changes in the experiments

discussed previously. When leader node’s bandwidth is sufficient

(i.e., 1000 Mbps), BUC increases as number of workers increases,

which matches our observation that there is no cluster saturation

with sync and async PU when leader’s bandwidth is 1000 Mbps.

When leader node’s bandwidth is limited (i.e, 100 Mbps), BUC in-

creases as the worker number grows until reaching 6 and 4 workers

for sync and async PU, which again matches our observation on

cluster saturation size with 100 Mbps bandwidth (which can be

seen in Figure 9 that the overall training time for sync and async

PU stops decreasing when there are more than 6 and 4 workers in

the cluster respectively).

6.5 Leader role splitting (LRS) for scaling up
training cluster size after saturation

Figure 12 shows the effect of LRS for training clusters with 4/8/12/16

workers. In this experiment, training devices’ network bandwidth

is set to 100 Mbps, and async PU is used for the case of without LRS,

of which the saturation size is 4 workers as we analyzed previously.

For the case of with LRS, sync PU is used between workers and

sub-leaders, and async PU is used between sub-leaders and the

top leader. If the cluster topology with LRS in Figure 4 is notated

as ł1-2-4ž (meaning 1 top leader, 2 sub-leaders, and 4 workers

which are evenly under the sub-leaders), the cluster topologies

(b)(a)

1 2 4 8 12 16
60%

70%

80%

90%

100%

M
od

el
 te

st
 a

cc
ur

ac
y

Number of workers
1 2 4 8 12 16

0

500

1000

1500

2000

2500

3000

3500

4000

O
ve

ra
ll

tra
in

in
g

tim
e

(s
ec

on
d)

Number of workers

 Batch size: 64 TDEs
 Batch size: 128 TDEs
 Batch size: 256 TDEs
 Batch size: 512TDEs

Figure 14: Impact of batch size on (a) training time, and (b)

model accuracy.

(b)

1 2 4 6 8
0%

10%

20%

30%

40%

50%

O
v
e

rh
e

a
d

 p
e

rc
e

n
ta

g
e

Number of workers

 CPU

 Memory

 Network

CPU Memory Network

0%

5%

10%

15%

20%

25%

30%

O
v
e

rh
e

a
d

 p
e

rc
e

n
ta

g
e

(a)

Figure 15: Overhead on normal workload caused by training

workload on (a) worker node, and (b) leader node.

with LRS in this experiments are ł1-2-4ž, ł1-2-8ž, ł1-3-12ž and ł1-

4-16ž, respectively. The results reported here are for 30 epochs

of training. Figure 12 (a) suggests that LRS achieves similar to

slightly better model accuracy as when LRS is not applied. Figure

12 (b) demonstrates that topologies with LRS incurs much less

training than those without, especially when the severity of cluster

saturation is high. From the above results it can be seen that LRS

is a promising approach to deal with saturated clusters. We are

working on addressing other fundamental challenges, such as how

to practically and systematically achieve the optimal topology.

6.6 Evaluating the effects dynamic training
data distribution

We compared our dynamic TDEs distribution approach with the tra-

ditional static training data partition approach. In this experiment,

an 8-worker cluster is used to trained a PerNet model with aysnc

PU for 30 epochs. We allow some of the workers to be łstruggling

workersž by using RP3 devices, which have significantly lower

processing power than ODROID devices. With static training data

partition, the training TDE set is evenly divided into eight parts,

each of which is fed to an individual worker. Figure 13 shows the

result of training time for the two different approaches. We can

see that our TDEs dynamic distribution approach is notably more

time-efficient than the static partition approach when there are

struggling workers in the training cluster.

SEC ’21, December 14–17, 2021, San Jose, CA, USA Pengzhan Hao and Yifan Zhang

6.7 Impact of training batch size

EDDL adopts mbSGD for training the PerNet model. Here we eval-

uate the impact of batch size on training time (Figure 14 (a)) and

model accuracy (Figure 14 (b)). The experiment performs training

for 30 epochs with different batch sizes and cluster sizes. Cluster

node’s network bandwidth is set to 100 Mbps, and async PU is

used. Figure 14 (a) shows that training time decreases as batch size

gets bigger. This is because larger batch size means less number of

parameter aggregation and synchronization. However, as demon-

strated in Figure 14 (b), training with large batch size can lead to

significant model accuracy drop for training clusters with four or

more workers. The default batch size of our prototype system is

128 TDEs, which strikes a good balance between training time and

model accuracy.

6.8 System overhead

The training nodes in our system are edge devices which have

their own normal workloads. Here we evaluate how EDDL training

workload affects the normal workloads on these edge devices. We

construct three normal workloads which are heavy on usage of

CPU, memory, and network respectively. The CPU and memory

workloads are constructed using sysbench which is a scriptable

database and system performance benchmark [15]. The network

workload is constructed using the iperf utility [26]. We run each of

the above workload while issuing a training workload which trains

a PerNet model using ODROID devices. The network bandwidth

of cluster nodes is set to 100 Mbps. Figure 15 (a) shows the result

for worker node. The major overhead caused by the training is

seen on the CPU workload, which is a slowdown about 27%. This is

because the main computation resource used by a worker node is

CPU. Figure 15 (b) shows the overhead results for leader node. We

can see that when the number of workers increase from 1 to 8, the

CPU workload and the memory workload suffer from slowdowns

of 5%-13% and 19%-26%, respectively. The major overhead for leader

node is on the network workload, which is about 10% to 43%. Given

the above result, it is preferable to run training workload on edge

devices when they are idle, especially for devices serving as training

leaders.

7 CONCLUSION

In this paper, we advocate edge-based DDL with which machine

learning models are trained based on the data collected locally

from users serviced by the same edge infrastructure. We designed

EDDL, an edge-based DDL system which addresses multiple chal-

lenges of performing DDL on edge environments where computing

devices are resource-constrained embedded devices connected via

consumer-grade wireless networks. The proposed EDDL system has

been implemented with ARM-based ODROID-XU4 and Raspberry

Pi 3 Model B boards. We further conducted a case study of enabling

edge-based mobile malware defense on our 16-device EDDL proto-

type system, which demonstrated the effectiveness and efficiency

of the EDDL system.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their tremendously valuable

feedback and Dr. Diego Perino for shepherding the paper revision.

This work was supported in part by NSF Award #1943269.

REFERENCES
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Irving, G., Isard, M., et al. Tensorflow: A system for large-scale
machine learning. In USENIX OSDI (2016).

[2] Ahmed, M. What is The Actual Speed of My WI-FI Network? https://blog.vtsl.
net/vtsl-blog/what-is-the-actual-speed-of-my-wifi-network.

[3] Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind,

J., Muthukumaran, D., O’Keeffe, D., Stillwell, M. L., Goltzsche, D., Eyers,

D., Kapitza, R., Pietzuch, P., and Fetzer, C. SCONE: Secure linux containers
with intel SGX. In USENIX OSDI (2016).

[4] Baumann, A., Peinado, M., and Hunt, G. Shielding applications from an
untrusted cloud with haven. In USENIX OSDI (2014).

[5] Beachx, A. Targeted Mobile Malware Aimed at Android. https://www.
trushieldinc.com/targeted-mobile-malware-aimed-at-android/.

[6] Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov,

V., Kiddon, C., Konecný, J., Mazzocchi, S., McMahan, B., Overveldt, T. V.,

Petrou, D., Ramage, D., and Roselander, J. Towards federated learning at
scale: System design. In Proceedings of Machine Learning and Systems (MLSys)
(2019).

[7] Brownlee, J. A Gentle Introduction to the Rectified Linear Unit (ReLU).
https://machinelearningmastery.com/rectified-linear-activation-function-for-
deep-learning-neural-networks/.

[8] Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R. Revisiting dis-
tributed synchronous sgd. arXiv preprint arXiv:1604.00981 (2016).

[9] Chilimbi, T., Suzue, Y., Apacible, J., and Kalyanaraman, K. Project adam:
Building an efficient and scalable deep learning training system. In USENIX OSDI
(2014).

[10] Cui, H., Zhang, H., Ganger, G. R., Gibbons, P. B., and Xing, E. P. Geeps: Scalable
deep learning on distributed gpus with a gpu-specialized parameter server. In
ACM EuroSys (2016).

[11] Dai,W., Kumar, A.,Wei, J., Ho, Q., Gibson, G., and Xing, E. P. High-performance
distributed ml at scale through parameter server consistency models. In AAAI
(2015).

[12] Dai, W., Zhou, Y., Dong, N., Zhang, H., and Xing, E. P. Toward understanding
the impact of staleness in distributed machine learning. In ICLR (2019).

[13] Davis, J. Carbon Black may be leaking terabytes of customer data
(UPDATED). https://www.healthcareitnews.com/news/carbon-black-may-be-
leaking-terabytes-customer-data-updated.

[14] Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M.,

Senior, A., Tucker, P., Yang, K., et al. Large scale distributed deep networks.
In NIPS (2012).

[15] Debian Manpages. Sysbench - multi-threaded benchmark tool for database
systems. https://manpages.debian.org/unstable/sysbench/sysbench.1.en.html.

[16] dlib.net. Dlib C++ Library. http://dlib.net/.
[17] Dorschel, A. Rethinking Data Privacy: The Impact of Machine Learn-

ing. https://medium.com/luminovo/data-privacy-in-machine-learning-a-
technical-deep-dive-f7f0365b1d60.

[18] Gressin, S. The Marriott data breach. https://www.consumer.ftc.gov/blog/2018/
12/marriott-data-breach.

[19] Hadjis, S., Zhang, C., Mitliagkas, I., Iter, D., and Ré, C. Omnivore: An
optimizer for multi-device deep learning on cpus and gpus. arXiv preprint
arXiv:1606.04487 (2016).

[20] Han, S., Shen, H., Philipose, M., Agarwal, S., Wolman, A., and Krishna-

murthy, A. Mcdnn: An approximation-based execution framework for deep
stream processing under resource constraints. In ACM MobiSys (2016).

[21] Hardkernel. ODROID XU4. http://www.hardkernel.com/main/products/prdt_
info.php.

[22] Hardy, S., Sonne, B., Crete-Nishihata, M., Dalek, J., Deibert, R., and

Senft, A. Permission to Spy: An Analysis of Android Malware Targeting Ti-
betans. https://citizenlab.ca/2013/04/permission-to-spy-an-analysis-of-android-
malware-targeting-tibetans/.

[23] Ho, Q., Cipar, J., Cui, H., Kim, J. K., Lee, S., Gibbons, P. B., Gibson, G. A., Ganger,

G. R., and Xing, E. P. More effective distributed ml via a stale synchronous
parallel parameter server. In NIPS (2013).

[24] Hsieh, K., Harlap, A., Vijaykumar, N., Konomis, D., Ganger, G. R., Gibbons,

P. B., and Mutlu, O. Gaia: Geo-distributed machine learning approaching LAN
speeds. In USENIX NSDI (2017).

[25] Hunt, T., Zhu, Z., Xu, Y., Peter, S., and Witchel, E. Ryoan: A distributed
sandbox for untrusted computation on secret data. In USENIX OSDI (2016).

[26] iPerf The ultimate speed test tool for TCP, U., and SCTP. Opendocument
technical specification. https://iperf.fr/.

[27] Isaak, J., and Hanna, M. J. User data privacy: Facebook, cambridge analytica,
and privacy protection. IEEE Computer 51, 8 (2018), 56ś59.

[28] Jiang, Y., Konečnỳ, J., Rush, K., and Kannan, S. Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488
(2019).

[29] Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., and Tang,

EDDL: A Distributed Deep Learning System for Resource-limited Edge Computing Environment SEC ’21, December 14–17, 2021, San Jose, CA, USA

L. Neurosurgeon: Collaborative intelligence between the cloud and mobile edge.
In ACM ASPLOS (2017).

[30] Kim, J. K., Ho, Q., Lee, S., Zheng, X., Dai, W., Gibson, G. A., and Xing, E. P.

Strads: a distributed framework for scheduled model parallel machine learning.
In ACM EuroSys (2016).

[31] Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L., Qendro,

L., and Kawsar, F. Deepx: A software accelerator for low-power deep learning
inference on mobile devices. In IEEE IPSN (2016).

[32] Lanner. Terabit Ethernet: The New Hot Trend in Data Centers. https://www.
lanner-america.com/blog/terabit-ethernet-new-hot-trend-data-centers/.

[33] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE 86, 11 (1998), 2278ś2324.

[34] LeCun, Y., Cortes, C., and Burges, C. J. THEMNIST DATABASE of handwritten
digits. http://yann.lecun.com/exdb/mnist/.

[35] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V.,

Long, J., Shekita, E. J., and Su, B.-Y. Scaling distributed machine learning with
the parameter server. In USENIX OSDI (2014).

[36] Li, M., Zhang, T., Chen, Y., and Smola, A. J. Efficient mini-batch training for
stochastic optimization. In ACM KDD (2014).

[37] Li, M., Zhou, L., Yang, Z., Li, A., Xia, F., Andersen, D. G., and Smola, A.

Parameter server for distributedmachine learning. In Big Learning NIPSWorkshop
(2013).

[38] Lian, X., Huang, Y., Li, Y., and Liu, J. Asynchronous parallel stochastic gradient
for nonconvex optimization. In NIPS (2015).

[39] Lian, X., Zhang, C., Zhang, H., Hsieh, C.-J., Zhang, W., and Liu, J. Can
decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent. In NIPS (2017).

[40] Lian, X., Zhang, W., Zhang, C., and Liu, J. Asynchronous decentralized parallel
stochastic gradient descent. In ICML (2018).

[41] Luo, Q., Lin, J., Zhuo, Y., and Qian, X. Hop: Heterogeneity-aware decentralized
training. In ACM ASPLOS (2019).

[42] Mao, J., Yang, Z., Wen, W., Wu, C., Song, L., Nixon, K. W., Chen, X., Li, H.,

and Chen, Y. Mednn: A distributed mobile system with enhanced partition
and deployment for large-scale dnns. In IEEE/ACM International Conference on
Computer-Aided Design (ICCAD) (2017).

[43] Mathur, A., Lane, N. D., Bhattacharya, S., Boran, A., Forlivesi, C., and

Kawsar, F. Deepeye: Resource efficient local execution of multiple deep vision
models using wearable commodity hardware. In ACM MobiSys (2017).

[44] McMahan, B., and Ramage, D. Federated Learning: Collaborative Machine
Learning without Centralized Training Data. https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html.

[45] Mitliagkas, I., Zhang, C., Hadjis, S., and Ré, C. Asynchrony begets momen-
tum, with an application to deep learning. In Annual Allerton Conference on
Communication, Control, and Computing (Allerton) (2016), IEEE, pp. 997ś1004.

[46] Morris, D. P. Google’s Privacy Whiplash Shows Big Tech’s Inherent Contra-
dictions. https://www.wired.com/story/googles-privacy-whiplash-shows-big-
techs-inherent-contradictions/.

[47] Mugerwa, S. Why advertised WiFi router speeds are different from actual real-
world speeds. https://www.dignited.com/37840/wifi-router-speeds-theoretical-
vs-actual-real-world-speeds/.

[48] Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, N. R.,

Ganger, G. R., Gibbons, P. B., and Zaharia, M. Pipedream: generalized pipeline
parallelism for DNN training. In ACM (2019).

[49] RaspberryPi. Raspberry Pi 3 Model B. https://www.raspberrypi.org/products/
raspberry-pi-3-model-b/.

[50] Recht, B., Re, C., Wright, S., and Niu, F. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS (2011).

[51] Smith, V., Chiang, C., Sanjabi, M., and Talwalkar, A. S. Federated multi-task
learning. In NIPS (2017).

[52] Targett, E. Mobile Malware on the Rise, Warns McAfee. https://www.cbronline.
com/news/smartphone-malware-mcafee.

[53] TitanPower. Data Center Network Speed Is Getting Faster! https://www.
titanpower.com/blog/data-center-network-speed-is-getting-faster/.

[54] Trach, B., Krohmer, A., Gregor, F., Arnautov, S., Bhatotia, P., and Fetzer,

C. Shieldbox: Secure middleboxes using shielded execution. In Proceedings of the
Symposium on SDN Research (2018).

[55] Villeneuve, N. Linsanity Leads to Targeted Malware Attacks.
https://blog.trendmicro.com/trendlabs-security-intelligence/linsanity-leads-to-
targeted-malware-attacks/.

[56] Villeneuve, N. Trends in targeted attacks. Tech. rep., Micro Trend, 2011.
[57] Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., and Ramage, D.

Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252
(2019).

[58] Wei, F., Li, Y., Roy, S., Ou, X., and Zhou, W. Deep ground truth analysis of
current android malware. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA’17) (Bonn, Germany, 2017),
Springer, pp. 252ś276.

[59] Wikipedia. Multilayer perceptron. https://en.wikipedia.org/wiki/Multilayer_

perceptron.
[60] Wikipedia. Stochastic gradient descent. https://en.wikipedia.org/wiki/

Stochastic_gradient_descent.
[61] Xing, E. P., Ho, Q., Dai, W., Kim, J. K., Wei, J., Lee, S., Zheng, X., Xie, P., Kumar,

A., and Yu, Y. Petuum: A new platform for distributed machine learning on big
data. In ACM KDD (2015).

[62] Yao, S., Hu, S., Zhao, Y., Zhang, A., and Abdelzaher, T. Deepsense: A unified
deep learning framework for time-series mobile sensing data processing. In
WWW (2017).

[63] Zantedeschi, V., Bellet, A., and Tommasi, M. Fully decentralized joint learning
of personalized models and collaboration graphs. In International Conference on
Artificial Intelligence and Statistics (2020).

[64] Zeng, X., Cao, K., and Zhang, M. Mobiledeeppill: A small-footprint mobile
deep learning system for recognizing unconstrained pill images. In ACMMobiSys
(2017).

[65] Zhang, H. Intro to distributed deep learning systems.
https://medium.com/@Petuum/intro-to-distributed-deep-learning-systems-
a2e45c6b8e7, 2018.

[66] Zheng, W., Dave, A., Beekman, J. G., Popa, R. A., Gonzalez, J. E., and Stoica, I.

Opaque: An oblivious and encrypted distributed analytics platform. In USENIX
NSDI (2017).

[67] Zinkevich, M., Weimer, M., Li, L., and Smola, A. J. Parallelized stochastic
gradient descent. In NIPS (2010).

	Abstract
	1 Introduction
	2 Related work
	3 The motivation study
	4 EDDL system design
	4.1 The setup of EDDL's distributed training
	4.2 Dynamic training data distribution
	4.3 Scaling up EDDL training cluster size
	4.4 Training cluster formation and training nodes management

	5 EDDL system implementation
	6 Evaluation and insights
	6.1 Batch training time
	6.2 Model accuracy
	6.3 Overall training time
	6.4 Training cluster saturation size detection
	6.5 Leader role splitting (LRS) for scaling up training cluster size after saturation
	6.6 Evaluating the effects dynamic training data distribution
	6.7 Impact of training batch size
	6.8 System overhead

	7 Conclusion
	References

