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Abstract—We show that many popular mobile services suffer
from excessive network bandwidth consumption. The root cause
is that the existing mobile/cloud communication interfaces are
designed and optimized for service providers rather than end
user devices. Solving the problem is challenging, because of the
conflicted interests of service providers and mobile devices. We
propose Edge-hosted Personal Service (EPS), with which device-
oriented solutions can be easily deployed without affecting service
providers. EPS also enjoys other notable advantages, including
enabling new mobile services, reducing loads on the cloud,
and benefiting delay-sensitive applications. We demonstrate the
usefulness of EPS by designing ETA (Edge-based web Traffic
Adaptation), an effective solution for the excessive bandwidth
consumption problem, and deploy ETA with a prototype EPS
system. By exploring lightweight virtualization techniques, our
EPS prototype system is highly scalable in terms of concurrent
EPS instances, and secure in terms of resource isolation. The
real-world evaluation shows that our ETA EPS can effectively
reduce bandwidth for mobile devices with small overheads.

I. INTRODUCTION

Web technologies are important for mobile service providers

to deploy their services on to mobile devices. For example,

most cloud-based services use HTTP(S) as the application

layer protocol to carry their service contents between cloud

servers and mobile devices. As a result, efficiencies related to

web service on mobile devices, such as network efficiency

and energy efficiency, play an important role in providing

good user experience for mobile devices. However, we observe

that the current web based interfaces used by mobile service

providers can incur significant excessive bandwidth consump-

tion on mobile devices. In this paper, we investigate reducing

the bandwidth requirement of web services on mobile devices

with practical solution.

We briefly introduce the two observations motivating this

work in the following, and will elaborate later in §II.

• First, we find that many popular web based cloud services

incur what we call hifasp (i.e., high f requency and small

payload) traffic on mobile devices, and most of the traffic

is unnecessarily spent on transmitting repetitive or ineffective

contents. Specifically, these web services, which usually deal

with frequent content and state updates, generate a high

volume of HTTP(S) messages in a short amount of time,

and the payloads of these messages are small compared to

the message sizes. As a result, the HTTP(S) message headers

account for a majority portion of the traffic generated. In the

meantime, due to the statelessness property of the HTTP(S)

protocol, most of the header fields are the same across different

messages, causing significant unnecessary network bandwidth

consumption on repetitive contents.

For example, to provide instant backup and seamless collab-

oration experience, Google Docs [1] aggressively synchronizes

(e.g., once per second) document changes when user is editing

a file. According to our measurement, when a user is typing

with the Google Docs app in a normal speed, about 2 KB

of web traffic is generated for each character input. Among

the traffic generated, close to 80% is for transferring repetitive

contents in the HTTPS message headers. We have measured

several additional well-known online document editing ser-

vices, as well as other popular cloud-based mobile services,

such as instant message and ride sharing, and obtained the

similar observation.

• Second, we observe that the RESTful development APIs,

which are commonly used in many web-based cloud ser-

vices, can cause considerable management and network traffic

overheads for mobile apps. These overheads arise from the

statelessness property of the RESTful APIs, which, although

facilitates service deployment and scalability, incurs extra

bandwidth consumption compared to a stateful design.

The above observations are two examples showing that

existing mobile device/cloud interfaces are designed in a way

optimized for service providers, but not for end user devices.

Optimizing for mobile devices in this case is challenging,

as the solutions often conflict with the interests of service

providers. For instance, stateful designs of communication

protocol and development APIs can address the previous

problems for mobile devices. But they can also significantly

increase design complexity and harm service scalability on the

infrastructure side. To address this challenge, we propose to

introduce computation/processing entities on the network edge

to bridge end user devices and cloud services, such that device-

friendly designs can be easily deployed for mobile devices,

while keeping the original infrastructure-friendly interfaces for

service providers. The resulting architecture is called Edge-

hosted Personal Service (EPS), which runs different computa-

tion/processing entities (called EPS instances) on edge nodes

to provide different functionalities for different users. EPS

is not only ideal for deploying device-oriented optimizations

without harming the interests of service providers, it also can

enable many new services, reduces processing server loads for

service providers to keep up with the exploding demand, and
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benefits a wide range of delay sensitive applications.

Enabling EPS in practice is challenging, mainly because

of two reasons. First, since each EPS instance is supposed

to serve an individual user for a specific functionality, it is

desirable to run a large number of EPS instances on an edge

node at the same time, which is challenging for embedded

device edge nodes with constrained computation resource.

Second, since different users’ data need to be processed on

the same edge node, the ability of secure resource isolation

among EPS instances is important to protect user data secu-

rity and privacy. We have explored lightweight virtualization

techniques to address the challenges. We will demonstrate

our effort by first presenting the design of ETA (Edge-based

web Traffic Adaptation), which is our solution of addressing

the excessive mobile device bandwidth consumption problem

for web services with hifasp traffic. ETA’s main idea is to

enable stateful and HTTP(S)-compliant communication on

mobile devices to avoid transmitting the lengthy and repetitive

contents in HTTP(S) message headers. Then we introduce our

experiences of implementing ETA and deploying it with EPS in

a lab environment. Our EPS edge implementation was carried

out on an x86 based laptop and an ARM development board,

both of which normally functioned as WiFi access points.

We explored two lightweight virtualization techniques, VM-

based unikernel and OS container, in implementing the EPS

edge runtime framework. The experiment evaluation of our

prototype system shows that ETA is able to effectively reduce

mobile device bandwidth consumption for web services with

hifasp traffic, and that our lightweight virtualization based EPS

runtime framework can efficiently support a large number of

concurrent ETA EPS instances with small overheads.

In summary, the contributions of this paper are as follows.

• We experimentally demonstrate the problem of excessive

mobile device network bandwidth consumption in many pop-

ular web-based mobile services that generate high frequency

and small payload (hifasp) traffic.

• We analyze that the root cause of the above problem, which

is the conflict between the interests of mobile devices and

service providers. We propose Edge-hosted Personal Service

(EPS), a novel architecture, which can not only solve the prob-

lem for mobile devices without affecting service providers, but

also enjoy several other notable advantages.

• We design ETA, an effective solution of solving the excessive

network bandwidth consumption problem for mobile devices.

• We implement a prototype EPS system exploring lightweight

virtualization techniques on two platforms based on x86 and

ARM respectively. We deploy the ETA solution with our pro-

totype EPS system, and evaluate with real-world experiments.

II. MOTIVATION STUDY

Web based interface is the most commonly used approach

for mobile service providers to connect their services to the

users. However, we observe that the existing web interfaces

used on mobile devices can cause significant network band-

width consumption, and therefore harming end user experience

(e.g., shorter battery life, greater financial cost). We detail

these two observations in the following in §II-A and II-B.

A. Observation 1: hifasp traffic is common for many web

services, and it has significant amount of repetitive contents.

Due to the highly mature and widely available world wide

web infrastructure, HTTP(S) is predominantly used as the

application layer network protocol to carry service contents be-

tween mobile service servers and end user devices. We observe

that many cloud based mobile services (e.g., online document

editing, instant messaging, and ride sharing) generate HTTP(S)

messages with high f requency and small payload (short as

hifasp), and there are a considerable amount of repetitive and

ineffective contents in those hifasp traffic, causing unnecessary

bandwidth consumption on mobile devices. Briefly speaking,

the direct causes of the observation are as follows.

• The hifasp traffic arises from one common characteristic of

the services, which is they all deal with frequent content and

state updates.

• The repetitive contents are caused by the stateless nature of

the HTTP(S) protocol, which requires every HTTP(S) message

to contain all the necessary information (e.g., authorization

info, cookies, service/app specific info) to allow the server

to keep track of the ongoing communication session without

storing any state information about the client.

• The ineffective contents are caused by the inability of web

services to adjust the contents of HTTP(S) messages according

to the capabilities of the clients they are communicating with.

According to our study, the average ratio of repetitive/ineffec-

tive content is usually larger than 50%, and for some services

it can be as high as 85%. Next, we take Google Docs [1],

a highly popular online word processing web service, as an

example to give an in-depth discussion of our observation.

TABLE I
WEB TRAFFIC GENERATED FOR TYPING A PARAGRAPH OF 1,016

CHARACTERS USING THE GOOGLE DOCS ANDROID APP.

On-screen Bluetooth

keyboard keyboard

Total HTTPS req/rsp msg pairs 806 527

HTTPS msg pair for each char typed 0.79 0.52

Req Avg msg size 1,025 bytes 1,034 bytes

HTTPS Avg msg payload size 138 bytes 146 bytes

msgs Avg msg payload ratio 0.13 0.14

Rsp Avg msg size 1,373 bytes 1,375 bytes

HTTPS Avg msg payload size 146 bytes 148 bytes

msgs Avg msg payload ratio 0.11 0.11

Total HTTPS traffic generated 1.94 MB 1.26 MB

HTTPS traffic for each char typed 1.96 KB 1.27 KB

Google Docs web traffic is hifasp, and the traffic volume

is high: Google Docs provides two forms of interfaces for

mobile users to use the service: mobile app interface and

web browser interface (i.e., a web portal for the service).

Both interfaces use HTTPS as the application layer protocol

to transfer user document changes between clients and cloud

servers. We have performed a series of experiments to investi-

gate the web traffic generated by the Google Docs service on

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

658



mobile devices. In the first experiment, we asked an everyday

smartphone user to normally type a paragraph of English text

containing 152 words (1,016 characters in total) into a Google

Docs document via the Google Docs Android app. The typing

was done using the on-screen keyboard on a smartphone. The

smartphone was connected to the Internet via a web debugging

proxy, which has the SSL proxying feature allowing us to

capture and record the HTTPS traffic generated. The second

column of Table I shows the summary of the resulted web

traffic. The typing process generated 806 pairs of HTTPS

request/response messages, which was high considering that

only 152 words were typed (i.e., the frequency of HTTPS

messages was high). The average sizes of HTTPS request and

response messages were 1 KB and 1.3 KB respectively. On

average HTTPS message body accounted for only about 10%

of the message size for both cases (i.e., the payloads of the

messages were small). In total, about 1.94 MB of web traffic

generated for typing the 1,016 characters, or about 1.96 KB

web traffic for each character typed, which was quite high

considering that it is not uncommon to have thousands or more

characters in a typical word document.

The reason that Google Docs web traffic is hifasp originates

from its goal of enabling instant synchronization of doc

changes between clients and the server. Specifically, when

the user is working on a document, the Google Docs client

(app or web based) updates doc content changes to the server

almost instantly, and the server immediately further propagates

the changes to all other active clients on the same document.

According to our experience, the update interval is around one

second. As a result, a high frequency of HTTPS messages

are generated when a Google Docs document is being edited,

and the content change carried in each HTTPS message is

small. This aggressive content change synchronization enables

not just instant doc content modification backup, but more

importantly also the seamless collaboration experience on

shared document between different users, which is one of the

main reason for Google Docs’ popularity.

Another factor affecting the volume of Google Docs’ web

traffic on mobile devices is the speed of user’s typing. Gener-

ally speaking, the faster the user types, the smaller the gener-

ated web traffic would be, because more doc content changes

can be included in each HTTPS message. We performed the

same experiment as described previously, but using a physical

Bluetooth keyboard connected to the phone. The third column

of Table I summarizes the results. We can see that the average

size of request HTTPS messages was slightly larger, and the

total number of HTTPS request/response message pairs were

smaller, than those in the on-screen keyboard case, because of

the reason just discussed. However, the traffic generated for

each character typed was 1.27 KB, which is still significant

for typing large documents.

The majority of Google Docs’ web traffic is repetitive

or ineffective: For web-based services whose traffic is hifasp,

such as Google Docs, HTTP(S) message headers account for

the majority of the web traffic. We find that a large portion

of Google Docs’ HTTPS message header contents are either

TABLE II
REPETITIVE AND INEFFECTIVE HTTPS MESSAGE HEADER CONTENT IN

THE WEB TRAFFIC OF GOOGLE DOCS.

On-screen Bluetooth

keyboard keyboard

Req Avg msg size 1,025 bytes 1,034 bytes

HTTPS Avg header repet. content size 851 bytes 851 bytes

msgs Repet. content ratio 0.83 0.82

Rsp Avg msg size 1,373 bytes 1,375 bytes

HTTPS Avg header repet. content size 600 bytes 600 bytes

msgs Avg header ineff. content size 440 bytes 440 bytes

Repet./ineff. content ratio 0.76 0.76

Overall repetitive/ineffective content ratio 0.79 0.78

repetitive or ineffective. Specifically,

• Repetitive contents refer to those message header fields

that have the same value in different messages. For example,

in upstream synchronization with Google Docs, the header

fields of Authorization and User-Agent in the request

HTTPS messages always have the same and long strings (more

than 200 bytes each) within the same session. This is because

the authorization header field carries the authentication

credential, which is generated at the beginning of an HTTP(S)

session, and remains unchanged throughout the whole session.

The User-Agent field records the type of the user agent, and

thus also keeps unchanged for the same client.

As discuss previously, the cause of the repetitive contents in

HTTP(S) headers is the statelessness of the protocol: sender

needs to provide all the necessary info (repeatedly) in every

packet to allow the receiver to function properly without the

need of memorizing sender’s states.

• Ineffective contents refer to the message header fields that

have no use for the HTTP(S) session. They are usually caused

by web server’s inability to adjust the header fields in the

HTTP(S) message they sent out based on the capabilities of

the clients they talk to. For example, in upstream sync in

Google Docs, a large Set-Cookie header field (440 bytes)

is included in every HTTPS response message sent by the

cloud server, regardless the type of the client (i.e., browser-

or app-based). However, this header field does not have any

effect for the app based clients, as they do not support cookie.

Table II summarizes the results about repetitive and inef-

fective contents in our Google Doc web traffic measurement

experiments. We can see that both the HTTPS request and

response messages in Google Docs’ web traffic have a signif-

icant amount of repetitive and ineffective contents (i.e., about

80% of all the web traffic generated), which can consume a

considerable amount of unnecessary network bandwidth when

inputing large documents.

We have performed experiments to examine other Google

online office suite products, such as Google Sheets and Google

Slides, as well as several other popular online editors, such

as Microsoft Word with cloud sync, Dropbox Paper [2],

ShareLatex [3], and obtained the similar results. Also, we

have evaluated many other popular web-based mobile services

with the need of frequent content/state update, such as Google

Hangouts (instant messaging), Facebook Messenger (instant
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Fig. 1. Solution high level idea: introducing an communication/processing
entity (CPE) on the network edge to enable device-friendly interface for
mobile devices.

messaging), and Lyft (ride sharing) and also obtained the

similar observations as those on Google Docs. We skipped

the details of these experiment results due to the space limit.

B. Observation 2: RESTful web APIs cause notable manage-

ment and network traffic overheads on mobile clients.

The previous observation reveals the considerable unneces-

sary bandwidth consumption caused by repetitive/ineffective

contents in HTTP(S) message headers of many web services

with hifasp traffic. We also find that the payloads of HTTP(S)

messages can also be bloated because of the way how the

mobile services are deployed. Specifically, many cloud service

providers are now offering development APIs, which is a

popular way to deploy their services onto mobile devices. For

example, popular cloud storage providers, such as Dropbox,

Google Drive, and OneDrive, all provide their development

web APIs allowing third-party applications to make use of

their services. These web APIs are usually designed to be

RESTful [4] for many benefits. We emphasize two of them,

which are related to our observation:

• With RESTful APIs, third-party app developers can have all

the info to determine how the apps should behave based on

the responses from the server. This way, service providers can

enjoy fast and easy deployment of their services by erasing the

need of providing their own client implementation to deploy

the services onto mobile devices.

• The characteristics of the RESTful architecture, such as

statelessness, enable efficient and scalable services [5].

However, the RESTful web API approach can lead to

notable management and network traffic overheads for third-

party apps. The overheads arise mainly from the statelessness

property of the RESTful architecture, which requires app

developers to spend extra effort to take care of the service/app

state acquisition and management. For instance, to keep a

local file consistent with the cloud copy in a RESTful cloud

storage service, app developers need to poll the file state on the

cloud side frequently, causing unnecessary network bandwidth

consumption. The reason is that the cloud server does not

retain any information about client states, and thus it is the

app’s job to track and manage all the file states.

As a comparison, traditional distributed file systems (DFS),

such as AFS [6], [7], Coda [8] and NFSv4 [9], keep callbacks

for open files on file servers, so that file changes made by one

client can be instantly and efficiently propagated to all other

clients opening the same file. However, this stateful design is
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Fig. 2. Overview of Edge-hosted Personal Service (EPS).

not scalable for the existing cloud storage services, which need

to deal with a much higher concurrent clients than traditional

distributed file systems. Therefore, finding a balanced solution,

which satisfies both the need of improving service scalability

for service providers and the need of improving network

bandwidth usage efficiency for mobile devices, is the central

goal of our solution design to be discussed next.

III. SOLUTION DESIGN

A. High level solution idea

The problems demonstrated above share the same root

cause, which is web services/protocols are usually designed

in a way optimized for service providers/servers, but not for

end user devices. As discussed previously, it is challenging to

design a communication scheme, which is optimized for both

mobile service providers and end user devices at the same

time. In addition, it is also challenging to design a solution that

can benefit the existing mobile service providers and devices

by requiring no or minimal changes on both sides.

Our idea of addressing the above challenges (illustrated in

Figure 1) is to introduce communication/processing entities on

network edge (e.g., WiFi access points, cellular base stations,

dedicated edge servers) between mobile devices and service

providers, such that device-friendly interfaces (e.g., communi-

cation protocol with small bandwidth requirement, traditional

DFS-like file management for mobile devices) can be enabled

between mobile devices and the edge, while keeping the

original cloud-friendly mobile device/cloud interfaces for the

service providers. This way, we can effectively address most

of the challenges discussed above, except for the no/minimal

change to mobile device requirement, which we solve with a

set of engineering techniques described later in §IV.

B. Edge-hosted Personal Service (EPS)

We propose Edge-hosed Personal Service (EPS), an edge-

assisted mobile-cloud computing architecture, where different

computation/processing entities (called EPS instances) are

running on network edge to provide different functionalities

for individual users. Figure 2 shows an example scenario of

EPS architecture. In the example, three cloud services A, B

and C are utilizing the EPS infrastructure. Two local wireless

networks are illustrated: a WiFi network with two access

points, and a cellular network within one base station. In this
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case, the edge nodes are the two APs and the base station,

in which EPS instances are running to serve the mobile users

within the local wireless network. Several key EPS properties

are: (1) An EPS instance is to serve an individual user for

a specific purpose. (U1’s EPS A in AP-1 is for helping user

U1 use the cloud service A.) (2) A user can start multiple

EPS instances on the edge node for accessing different cloud

services. (User U1 is running three EPS instances to access

the three cloud services respectively.) (3) An EPS instance is

created/destructed on demand as the user starts/stops accessing

the corresponding cloud service. (4) An EPS instance is

migratable across the edge nodes as the user is roaming within

the same network. (5) With the help from the EPS management

cloud service, EPS instances (e.g., those storing user data) can

be saved on their destruction, and can be resumed later in the

same or a different edge node. (6) An edge node needs to

provide its normal services (e.g., routing for wireless routers)

in addition to running EPS instances.

EPS advantages: EPS has many advantages. For example,

as discussed previously, EPS can naturally facilitate the de-

ployment of device-oriented optimizations, such as our mobile

device bandwidth reduction solution to be introduced later,

without harming the interests of service providers. Meanwhile,

many promising applications and optimizations can be enable

with EPS, such as mobile devices computation edge offload-

ing, edge-based web caching and optimization for mobile

devices, and new edge-based services targeting users in a local

area. Also, with EPS, cloud services can be easily distributed

to edge nodes to reduce the load pressure on cloud servers,

making it much easier for service provider to keep up with the

rapid demand growth. In addition, the short distance between

mobile devices and edge nodes greatly reduces EPS response

time. Thus, many delay-sensitive mobile applications can

effectively take advantage of EPS for enhanced performances.

EPS challenges: Enabling EPS in practice is not trivial.

Two important challenges need to be addressed. The first

challenge arises from the need of supporting tens or even

hundreds of concurrent EPS instances (i.e., in the same order

of magnitude as the maximum possible number of users

supported by the edge node), which is challenging considering

that many edge nodes are embedded devices with constrained

computation resources. The second challenge is that, since

EPS instances of different users are running on the same

edge node, securing sensitive user information handled by EPS

instances and preserving user privacy are critical.

To address the above challenges, we explore lightweight

virtualization techniques to enable lightweight and secure EPS

runtime on edge nodes (details in §IV). We have designed and

implemented an EPS, which is used to deploy our solution,

named ETA (Edge-based web Traffic Adaptation), for address-

ing the problem of excessive mobile device network bandwidth

consumption for web services with hifasp traffic (§II-A).

C. The design of ETA

Recall that the excessive mobile device network bandwidth

consumption shown in §II-A originates from two sources: one

is the significant amount of repetitive contents in HTTP(s)

message headers, and the other is the ineffective contents in

HTTP(S) message headers. Therefore, the approach of ETA to

solve the problem is twofold: (1) enabling a stateful and

HTTP(S)-compliant communication between mobile devices

and ETA EPS instances, such that the lengthy and repetitive

contents in HTTP(S) message headers can be converted to the

concise states shared between the two sides; and (2) adjusting

header contents of the messages sent from EPS instances

to mobile devices, based on the mobile devices’ capabilities

observed in their messages.

Enabling stateful communication between mobile de-

vices and ETA EPS instances: We use a simple example

to explain ETA’s approach. Suppose in an online document

editing web service, only two header fields A and B, and two

other header fields C and D, are used in the HTTP request

messages and response messages respectively. Figure 3 shows

a scenario of a mobile device updating document changes to

cloud servers using the HTTP POST method. When editing the

same document, the header fields in both request and response

messages are kept the same (which is close to what we

observed in Google Docs). As a result, due to the hifasp nature

of the web traffic, the majority of the mobile device network

bandwidth is consumed on transmitting the repetitive header

contents in the headers of the HTTP messages.

With the help from EPS instances, ETA converts the stateless

HTTP(S) protocol to an equivalent but stateful communi-

cation protocol, which is called ETA protocol, for mobile

devices. The idea is to allow the mobile device and its

communication counterpart, which is an EPS instance, to

synchronously record the repetitive header contents on their

own key-value stores, so that the lengthy and repetitive headers

contents in the original HTTP messages can be adapted to

the concise keys in ETA messages. Figure 4 shows how

ETA reduces mobile device bandwidth consumption for the

example scenario. Before the first HTTP POST message leaves

out of the device, it is intercepted by ETA, which finds

that the contents of the all the header fields shown in the

message do not exist in the device upstream key-value store.

Therefore, the contents of those header fields are added to the

device upstream key-value store (step 1 ). Then ETA sends

out the original HTTP message, with the keys piggybacked to

the corresponding header field contents in the message (step

2 ). Upon receiving the first HTTP POST message from the

device, the EPS instance adds the key/value pairs shown in the

received message to its own upstream key-value store (step 3 ).

The EPS instance then removes the piggybacked keys from

the received message to restore the original POST message,

and sends it to the cloud server (step 4 ). When receiving

the response message from the cloud server (in step 5 ), the

EPS instance finds all the header fields in the message do

not exist in its downstream key-value store. Thus it builds

the key-value store entires accordingly (step 6 ), and sends

the response message with downstream keys piggybacked to

the device (step 7 ). The device propagates its downstream

key-value store according to the information in the response
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Fig. 3. An simplified example of the excessive mo-
bile device network bandwidth consumption prob-
lem for web services with hifasp traffic.

Fig. 4. An illustration of ETA’s approach of enabling stateful communication between a mobile
device and an ETA EPS instance for the example scenario in Fig. 3.

message received (step 8 ). When the app sends out the second

HTTP POST message, ETA intercepts it, replaces all the header

fields, whose contents already exist in the device upstream

key-value store, with the store keys to form an ETA request

message, and send the resulted message to the EPS instance

(step 9 ). When the EPS instance receives the ETA request

message, it looks up its upstream key value-store, replaces

the keys with the corresponding values to restore the original

HTTP POST message, and sends to the cloud server (step

10 ). The following downstream messages will follow the

similar process. With this design, we can significantly reduce

the bandwidth consumption on the mobile device caused by

transmitting the lengthy repetitive header contents.

Adjusting message header contents based on the capa-

bilities of clients: To eliminate ineffective header contents

in HTTP(S) messages, before sending out the intercepted/re-

ceived HTTPS request/response messages, ETA-enabled de-

vices or ETA EPS instances would examine the messages, and

remove those ineffective fields based on the information in

the response/request messages they previously received. In our

implementation, this is achieved by building and checking a

lookup table, which records the causal relationship between

different HTTP(S) request/response header fields based on the

HTTP(S) specification. For example, to deal with the problem

of long and ineffective Set-Cookie header field in Google

Docs’ web traffic (§II-A), an ETA EPS instance would remove

the Set-Cookie header fields from the HTTPS response

messages before sending them to the mobile device, because

it has not observed any Cookie field in the HTTPS request

message they received from the mobile device (meaning the

client does not support cookie).

IV. ETA EPS PROTOTYPE IMPLEMENTATION

Implementation overview: We have implemented the pro-

posed ETA mechanism and deployed it in a lab environment in

the form of EPS. The prototype system consists of two parts:

the edge node EPS implementation running ETA functionality

and the ETA device component. An overview of the prototype

system is shown in Figure 5.

• The edge node EPS implementation has three major compo-

nents: (1) the EPS instances running the ETA edge function-

ality for different users; (2) the EPS manager, whose job is

to manage the life cycle of EPS instances (e.g., creation and

destruction); and (3) the EPS runtime framework to support

the efficient execution of a large number of EPS instances, as

well as secure resource isolation among them. The EPS edge

node implementation has been performed on two hardware

platforms: an x86-based laptop equipped with a quad-core 3.4

GHz CPU/32 GB memory, and a ARM-based ODROID XU3

board equipped with big.LITTLE ARM Cortex A15 quad-

core and Cortex-A7 quad-core CPUs/2 GB memory [10]. Both

platforms were normally functioning as a WiFi access point

in our implementation and evaluation experiments.

• The ETA device component’s job is to intercept the HTTP(S)

traffic generated by the apps, and adapt those traffic of interest

into ETA message stream. It was implemented on a Samsung

Galaxy S4 smartphone.

In the following, we describe the notable implementation

challenges and our approaches of addressing them.

Exploring lightweight virtualization techniques for light-

weight and secure EPS edge runtime: Recall that the goal of

the EPS edge runtime is twofold: one is to efficiently support a

large number of EPS instances for different users and different

functionalities (e.g., ETA as we show in this paper); the other

is to securely isolate the resource of different EPS instances,

which may posses and handle private information for different

users. Therefore, achieving lightweight and secure EPS edge

runtime is critical for the success of the EPS architecture.

We have explored using lightweight virtualization tech-

niques, which can well satisfy the lightweight and the resource

isolation requirements of EPS edge runtime. There are two

lightweight virtualization approaches suitable for EPS: con-

tainer [11]–[13] and VM-based unikernel [14]–[17].

• The container approach (the lower right part in Figure 5)

utilizes OS level virtualization method to provide a virtualized

OS environment to host individual applications or OSes.

• The VM-based unikernel approach (the lower left part of

Figure 5) adopts the library OS concept to eliminate the

management overhead caused by traditional OSes on special-

ized applications, such as EPSes in our case. It integrates

application logic (e.g., EPS logic), the corresponding libraries
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Fig. 5. Prototype implementation of the ETA EPS system. The edge node
implementation was performed on two hardware platforms (x86 laptop and
embedded ARM development board) using two lightweight virtualization
techniques (VM-based unikernel and OS container).

(e.g., SSL/TLS), and related system functionalities (e.g., mem-

ory allocation, networking. etc.) into one tiny (e.g., a few

megabytes) bootable VM image, which can directly run on

a bare-metal hypervisor.

Our implementation with the container approach was per-

formed on both the laptop platform and the ARM develop-

ment board platform. We use Docker [11] as the container

environment in the implementation. The EPS manager was

implemented using the relevant Docker utilities. The normal

services of the AP are provided by the host OS. The implemen-

tation with VM-based unikernel approach was performed on

the laptop platform using the Rumprun unikernel framework

[18]. The ETA EPS instances directly run on virtual machines

(DomU) created through the Xen hypervisor. The normal

services of the AP are performed in the full-fledged Linux-

based host OS running in Domain 0. The EPS manager is also

running in Domain 0. We are in the process of building our

own unikernel framework that can run on ARM environment.

The existing unikernel implementations for ARM are rudimen-

tary and cannot support complex libraries such as SSL/TLS.

We expect to be able to report our finding and experience in

the near future.

Intercepting HTTPS traffic on mobile devices without

modifying mobile OS or apps: To allow our system to be

practical and easily deployable to existing mobile devices,

an important goal when implementing the device component

is to achieve HTTP(S) traffic interception and adaptation

without requiring modifying either the mobile OS or the apps.

There are multiple ways to achieve the goal. Our approach

is implementing a user level SSL proxy using the OpenSSL

library. The device component relies on the widely available

system network proxy feature on all major OSes to route

all the WiFi or cellular traffic to our SSL proxy, which in

turn deciphers the traffic and performs the traffic adaption

according to the ETA design. The second approach is utilizing

TABLE III
HTTPS MESSAGE ROUND TRIP TIME BREAKDOWN (UNIT: MILLISECOND)

Edge node platform Tdev TEPS Tother Overall

Original (w/o EPS) - - - 197.28

Unikernel on x86 0.64 0.15 175.76 176.55

Docker on x86 0.93 0.22 234.31 235.47

Docker on ARM 0.75 2.74 308.05 311.55

Linux’s TUN/TAP driver to intercept network traffic at layer

3 or layer 2. The above two approaches enable system-wide

traffic routing, it requires installing our own SSL certificate

on both the mobile device and the edge node. To avoid this

limitation, we can also use the runtime hooking approach [19],

[20] to intercept apps’ calls to HTTP library function calls,

perform the traffic adaptation, and resume the normal call

flow of the apps. According to our experience, the latter two

approaches have the similar performance as the first one (i.e.,

the system network proxy approach).

Managing the key-value stores on mobile devices and

edge nodes: The key-value stores on both device component

and EPS instances are memory based. Currently we use a

simple strategy to manage the key-value stores: a fixed amount

of entries are allocated for each key-value store, and these

entries are filled linearly. The filling process wraps to the first

entry and continues once the store is full.

V. SYSTEM EVALUATION

ETA’s effectiveness in mobile device bandwidth re-

duction: We first evaluated ETA’s performance on reducing

bandwidth consumption for web services with hifasp traffic.

For example, we asked the same user to type the same

paragraph of text (as described in §II) using the Google Docs

app on the ETA-enable Samsung Galaxy S4 smartphone, and

measured the traffic generated. With the on-screen keyboard,

only 310 KB of traffic generated. Compared with the 1.94 MB

traffic generated for typing the 1,016 character, our system

saved about 84% of traffic. With the Bluetooth keyboard,

our system reduced the bandwidth consumption by 83%. It

is worth noting that the actual bandwidth saving ratio was

larger than the redundant/repetitive content ratio measured in

the motivation study. This is because the new line characters

in HTTP message headers were not counted when calculating

the redundant/repetitive content ratio. But these characters can

be removed by our ETA system.

HTTPS message round trip time: We evaluated the

average HTTPS message round trip time, which was calculated

as the time between sending out an HTTPS request message

and receiving the response message on the device. We instru-

mented our system and measured the following components

of the the round trip time.

• Tdev: time spent in the ETA device component, which is

mainly the traffic adaptation time spent on the smartphone.

• TEPS : time spent in the ETA EPS instance, which is mainly

the traffic adaptation time spent on the edge node.

• Tother: all other time, which consists of the time spend on

WiFi transmission, Internet transmission, web server process-
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(a) Uplink bandwidth (b) Downlink bandwidth

Fig. 6. The saturated bandwidth of the AP (i.e., the edge node) as the number
of ETA EPS instances was scaled up.

ing, and network processing on both the smartphone and the

edge node.

In the experiment, we used the Google Docs app to send 50

HTTPS messages, and received 50 response messages from

the cloud server. The average size of the HTTPS messages

are as reported in Table II. Only one EPS instance was

running on the edge onde. The average round trip times are

shown in Table III. We can see that our implementation with

unikernel on the x86 laptop essentially incurred no overhead

regarding the round trip time. The overall round trip time

for the unikernel implementation was even smaller than that

without using EPS, because of the much smaller traffic for the

WiFi transmission. This result suggests that unikernel is highly

lightweight to be used as the EPS edge runtime. The Docker

based implementation on the ARM board incurred about 100

ms extra time, which was mainly due to the slow network

processing on the board.

EPS instance scalability on edge node: We evaluated

the capability of our prototyped edge EPS runtime to sup-

port concurrent EPS instances. To enable a large number of

concurrent active EPS instances on edge node, we develop a

program running on PC to simulate individual Google Docs

users. The PC was connected to a server, which was located

in the local network and replied to the simulated Google Docs

users with Google Docs-like HTTPS response messages. In the

experiment, we simulated different numbers (i.e., 1, 25, 50, 75,

100 and 200) of users, so that the corresponding number of

active ETA EPS instances can be initiated.

We used two metrics to evaluate the feasibility of using

ETA EPS in real-world scenario, which are, when a large

number of active EPS instances are running on the edge node

at the same time, how (1) the normal edge node functionality

and (2) the HTTP(S) message round trip time can be affected.

For evaluating the first metric, we measured the saturated

bandwidth using iperf as we scaled up the number of active

EPS instances. Figure 6 shows the results, where we can have

two findings: (1) The ARM development board was not able

to run more than 63 EPS instances. We are now working on

optimizing for the ARM board to improve its performance.

(2) Unikernel based implementation worked better than the

Docker based one. For the second metric, we measure the

average HTTPS message round trip time as we increased the

number of active EPS instances on the edge node. Figure

7 shows the result, from which we can have the similar
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Fig. 7. HTTPS round trip time as the number of ETA EPS instances was
scaled up.

conclusion as the previous metric.

EPS system overheads: The overheads mainly occur on

mobile devices as the HTTP(S) traffic needs to be routed

to the device component for processing. We performed two

experiments to evaluate the impacts. In experiments, we sent

a stream of files using HTTPS on the ETA-enable smartphone.

However, the resulted HTTPS traffic was not adapted by ETA.

By doing so, we simulated HTTPS traffic that is not hifasp, and

thus is not handled by ETA. In one experiment, we measured

the transmission time (results in Figure 8); and in the other

experiment, we measured the device system power (results

in Figure 9). From the results we can see that our prototype

system incurred a small amount of time and power overheads.

VI. RELATED WORK

Utilizing edge infrastructure for mobile usage improve-

ment: Edge computing has received an fast increasing amount

of attention recently due to its various advantages [21]–

[23]. There have been several works focusing on exploiting

edge infrastructure for improving user experience on mobile

devices. For example, to overcome the constraints of limited

computation resources and long communication latency on

mobile device, Satyanarayanan et al. proposed to offload

computation from devices to VM-based cloudlets [24]. To im-

prove the user experience for existing cloud services, AirBox

[25] moves delay-sensitive cloud tasks from data centers to

network edge. ParaDrop [26] facilitates third-party developers

to deploy their services on the edge for the users to enjoy low

communication latency between to/from the services. We have

previously explored the EPS concept [27], [28]. In [27], we

first proposed the idea of EPS. In [28], we leverage EPS to

solve the problem of Office suite document synchronization in

cloud storage services. In this paper, we address the problem

of excessive bandwidth consumption in mobile web services

with EPS, and prototyped the system using real ARM-based

hardware.

Proxy middleware for web services and mobile devices:

The proposed EPS architecture is essentially a middleware

architecture. Using middleware design is common in many

solutions of optimizing performances for web services and mo-

bile devices. Google’s Flywheel [29] and Baidu’s TrafficGuard

[30] are web proxies helping reducing web traffic on mobile

devices. Scepter [31] is a proxy system to reduce overall

network traffic for mobile devices. It shares the similar idea as

ETA, which is to turn the network communication occurring

on mobile devices to stateful to eliminate the redundant
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Fig. 8. Time overhead on the smartphone for transmitting normal
HTTPS traffic not adapted by ETA.
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Fig. 9. Power overhead on the smartphone for transmitting normal
HTTPS traffic not adapted by ETA.

or repetitive content in each network packet. Our work is

different in that we focus on experimentally demonstrating and

analyzing the problem of excessive bandwidth consumption

problem for web services on mobile devices, and we also con-

centrate on the broader context of extending existing mobile-

cloud computing infrastructure with the introduction of EPS.

There are also works on client-side middleware to improving

performances for mobile devices. For example, CacheKeeper

[32] is a client-side system-wide web caching system for

mobile applications. QuickSync [33] adopts the middleware

approach to optimize cloud storage sync performances on

mobile devices based on wireless network conditions.

VII. CONCLUSION

In this paper, we demonstrated the problem of excessive

client-side network bandwidth consumption problem for mo-

bile services with hifasp traffic, and designed ETA, an effective

solution for the problem. We performed in-depth analysis to il-

lustrate the challenges of deploying the solutions like ETA. We

proposed EPS, a novel architecture to enable device-oriented

solution deployment without affecting cloud services. We

implemented a prototype EPS system exploring lightweight

virtualization techniques, and demonstrate the effectiveness

and efficiency of the system by deploying ETA with it.
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