
MEUNIK: Rethinking Virtual Machine Memory
Resource Management for Unikernel-based VMs

Yongshu Bai§
Zhejiang Lab

Hangzhou, Zhejiang, China

Xin Zhang
School of Computing
Binghamton University

Binghamton, New York, USA

Yifan Zhang
School of Computing
Binghamton University

Binghamton, New York, USA

Abstract—In this paper, we investigate the problem of achiev-
ing efficient memory resource management for unikernel-based
virtual machines (uVMs), where unikernels are running as the
operating systems of the VMs. Through extensive experiments,
we first demonstrate that existing VM memory management
mechanisms are unsuitable for uVMs. Then, we propose ME-
UNIK, a system that aims to achieve high memory management
efficiency or uVMs. The four key mechanisms of MEUNIK are
designed to address the problems we find in existing solutions. We
have implemented a prototype MEUNIK system based on the Xen
hypervisor and performed extensive evaluation experiments on
three groups of uVMs, which are constructed based on a variety
of programs and applications, including fifteen small benchmark
programs, four complex server applications, and two network-
operation-heavy programs. The evaluation results show that our
system achieves the design goals with minimal overhead.

I. INTRODUCTION

Unikernels are a type of application-specific OSes which
are constructed following the philosophy of library OS [1]–
[3]. Each unikernel can be considered as a single-application
OS where only the OS kernel functionalities needed by the
application are compiled with the application code into the
OS image. As a result, unikernels are small in image size and
are extremely lightweight in OS bootstrapping and runtime
performances [4]–[9].

Unikernels are highly promising for computing scenarios
where the workload is simple, highly parallel, and demands
a high level of security isolation. The potential of unikernels
can be seen in the following two examples:
• In the emerging serverless computing paradigm [10]–[14],
solutions that use conventional OSes often fall short when
handling serverless workloads due to the complex nature of
OS kernels [15]. Unikernels, on the other hand, are a more
suitable solution because they offer two key advantages: short
start-up and deconstruction times and ease of management and
scaling, both due to their extremely lightweight nature [9],
[15], [16].
• In multi-tenant edge (MTE), users run their workloads
on edge computing nodes which can be embedded edge
devices with limited computing resources [17]–[23]. VMs
running conventional OSes cannot scale well in MTE due
to the resource constraints on embedded edge devices and

§This work was completed during Yongshu’s time as a student at Bingham-
ton University.

the multiplexing overhead of the OSes. In comparison, VMs
running unikernels suit edge devices better because of their
low demand for computing resources.

Due to the single-application nature, unikernels are typ-
ically deployed multiple per physical computing node. As
a result, unikernels can be categorized as either VM-based
[4]–[9], [24]–[33] or process-based [3], [34], [35]. VM-based
unikernels run as guest OSes in individual VMs created
by the underlying hypervisor, such as Xen [36] or KVM
[37], [38]. Process-based unikernels run in special sandboxed
processes, between which communication and interference are
significantly limited. VM-based unikernels have received more
attention in the literature due to their advantages of better
security and scalability, which are enabled by the use of
existing hypervisor technologies.

In this work, we first conduct experiments to study the
suitability of existing VM memory resource management
mechanisms for VMs that run unikernel as the guest OS, or
unikernel-based VMs (uVMs). We make the following four
observations, which suggest that existing solutions are not
suitable for uVMs: (1) Existing hypervisors require a prede-
termined amount of memory to be configured to create VMs.
We show that this requirement is not suitable for uVMs, which
typically exhibit high memory usage variance. (2) Existing
mechanisms for transferring memory between VMs do not
work well for uVMs. (3) Existing cross-VM memory-sharing
mechanisms are slow and costly for uVMs. (4) Existing
VM working set estimation and idle memory reclamation
mechanism incurs high overhead for uVM workload. The
details of these observations are discussed in Section III.

To address the above problems, we propose MEUNIK, a
framework that provides hypervisors with a means of manag-
ing the memory of uVMs efficiently. The primary objective of
MEUNIK is to optimize memory availability within the system
while taking into account the unique features of unikernels and
uVMs. MEUNIK consists of four key components, which are
summarized as follows:

First, our experiment shows that uVMs of the same type
(i.e., uVMs running the same application) have a notably
higher degree of shareable memory than traditional VMs.
Therefore, to address the problem of memory over-allocation
caused by predetermined uVM startup memory allocation,
MEUNIK employs an on-demand memory allocation approach

based on copy-on-write (CoW) uVM cloning. This approach
improves memory availability in the system by enabling intra-
type uVM memory sharing, which allows uVMs of the same
type to share most of their memory with an app-template
uVM while requesting additional memory only as necessary.
The details of the experiment and the on-demand memory
allocation design are presented in Section IV-A.

Second, MEUNIK adopts a novel three-stage approach for
uVM creation. uVMs created using this approach share mem-
ory with their corresponding app-template uVMs, which in
turn share their memory with a generic-template uVM that
uses only a single physical memory page. Through this design,
the system achieves two goals at the same time: (1) minimizing
the memory footprint of app-template uVMs, and (2) cross-
type uVM memory sharing where uVMs running different
applications share memory. More details are discussed in
Section IV-B.

Third, MEUNIK uses a proactive approach to promptly
release memory that has been freed by individual uVMs back
to the available memory pool for reuse by other uVMs. The
design addresses the unsuitability of existing VM memory
transferring mechanisms on uVMs. However, due to the CoW-
based memory allocation approach, this design can incur
notable time overhead for uVMs with frequent memory oper-
ations. To address this issue, we propose two optimizations.
The details of the proactive memory-releasing approach and
its optimizations are discussed in Section IV-C.

Lastly, MEUNIK employs a simple yet effective approach
based on the LRU (Least Recently Used) strategy to estimate
the working set and reclaim idle memory for uVMs. We show
that existing complex mechanisms for working set estimation
and idle memory reclamation are overkill for uVMs, mainly
due to the single-application nature of uVMs. We present the
experiments and our insights in Section IV-D.

We implemented a prototype MEUNIK system with the Xen
hypervisor [36]. We built three groups of unikernels based
on the Rumprun platform: 15 Python benchmark program
unikernels, 4 server application unikernels, and 2 ClickOS
network middlebox unikernels. We then thoroughly evaluated
the performance of the MEUNIK prototype system with these
unikernels. The evaluation results show that MEUNIK effec-
tively manages memory resources for individual uVMs based
on their actual behavior and aggressively improves system
memory availability with little overhead.

In summary, contributions in this paper are as follows:
• We demonstrate the limitations of existing VM memory
management solutions for unikernel-based VMs through de-
tailed real-world experiments and measurement studies.
• We propose MEUNIK, a solution specifically designed to
address the limitations of the existing approaches.
• We implement a prototype MEUNIK system based on the
Xen hypervisor.
• We create uVMs using various programs and applications,
including 15 small benchmark programs, four complex server
applications, and two network-intensive programs. We conduct
extensive experiments to evaluate the performance of our

prototype system, and the results indicate that our system
achieves the intended design goals with minimal overhead.

II. RELATED WORK

VM forking and copy-on-write (CoW). There have been
works that utilize the approach of cloning/forking/checkpoint-
ing an existing VM or container instance for various purposes
[39]–[42]. For example, Potemkin [39] is a honeyfarm system
that utilizes a large number of VMs to deploy decoy systems
or services which attract attackers and malware. To speed up
the VM creation, each new VM is forked from an initialized
VM instance. SnowFlock [40] uses the VM fork approach to
quickly clone a VM into multiple replicas on different hosts,
which is a desired scenario in cloud computing. Zhi et al.
utilize VM fork to start VMs in the cloud for more efficient
system testing [41]. Catalyzer [42] proposes a sandbox fork
mechanism that reduces the time needed to start a container in
a serverless computing environment. All four works described
previously also utilize the copy-on-write (CoW) technique
to reduce VM startup time and conserve system resources.
However, the works discussed above apply to conventional
VMs, while we study the unique behaviors of uVMs and
design solutions for efficient and effective uVM memory
management in hypervisors.

Nephele [43] is a recent work that investigates how to
systematically support uVM cloning. This work goes beyond
duplicating address spaces to address other issues, such as
I/O cloning and inter-uVM communication. While Nephele
focuses on improving the CoW-based cloning technique for
uVMs, our work aims to identify issues within current hy-
pervisors regarding uVM memory management and develop
solutions that consider the unique attributes of uVMs. In ad-
dition to leveraging the cloning technique, our work introduces
three distinct and novel solutions to achieve the goal. In this
sense, Nephele and our work complement each other.

Lightweight hypervisor designs. Designing hypervisors that
are lightweight and secure has been the focus of many recent
research work. Firecracker [44] is one such effort that is
designed for serverless workloads. The central idea is to use
VMs created by a hypervisor to run containers to achieve better
security isolation. LightVM [45] is a Xen-based lightweight
hypervisor that aims to boot a large number of VMs quickly.
Similar to Firecracker, Kata Container [46] aims to provide
a lightweight and secure virtualized runtime environment by
running containers in VMs that are created and monitored by a
hypervisor. Our work investigates and demonstrates the inade-
quacy of existing hypervisors’ approach to managing memory
resources for unikernel-based VMs. The proposed solutions
in this work focus on the aspect of memory management
and complement the lightweight hypervisor designs in the
literature.

Improving memory availability in virtualized systems. Our
work puts focus on maximizing memory sharing to improve
memory availability for unikernel-based uVMs. Besides KSB-
based [47]–[49] and TPS-based [50], [51] ways of performing

VM memory sharing/deduplication, there have been other
work to improve memory sharing in virtualized environments
[52]–[55]. Our work complements these works in that we are
trying to solve this important problem in the context of uVMs.

III. MOTIVATION

Due to the single-application nature of unikernels, a physical
host needs to run a significantly higher number of uVM
instances than with the case of traditional VMs (i.e., VMs
running traditional OSes) in practice. We observe that existing
VM memory management in hypervisors can cause memory to
become a bottleneck which significantly limits the scalability
of uVMs. We discuss our observations as follows.

Observation 1: Predetermined VM startup memory al-
location is not suitable for uVMs. Existing hypervisors
require that the size of memory assigned to a VM to be
predetermined before starting it [56]–[59]. For example, with
Xen, the administrator needs to specify either a fixed memory
size or a range of memory sizes for a VM before launching it
[56], [57]. If a fixed memory value is provided, the VM will
be allocated with the requested amount of memory initially. If
a range is specified, the hypervisor will keep the amount of
memory allocated to the VM between the specified minimum
and maximum memory values. With KVM, memory allocated
to a VM is also manually specified, either when starting the
VM or during runtime [58].

In practice, the static VM memory allocation described
above is not suitable for uVMs because it is difficult for
administrators to set a proper memory value for uVMs. The
difficulty stems from the following two observations.
(1) Cross-type uVM memory usage difference is high: memory
demands by uVMs of different types (i.e., uVMs that run
different applications) can be drastically different.
(2) Intra-type uVM memory usage variance is high: for the
same type of uVMs (i.e., uVMs that run the same application),
the memory consumption may be highly variable depending
on various factors, such as internal memory behavior of the
application and different types of requests that the uVM needs
to processes.

The two observations above were obtained through our
experiments in which we compiled five applications into
Rumprun unikernels [31], and run them with the Xen (version
4.10) VMs. The first two applications are Node.js [60]
and Ngnix [61] web servers. Both web servers host a doc-
umentation website which consists of 1,000 static web pages
of different sizes. The next two applications are popular in-
memory key-value stores Memcached [62] and Redis [63].
The last one is on-disk key-value store LevelDB [64].

We first compared the memory demands of uVMs of dif-
ferent types (i.e., cross-type uVM memory usage). For the
two web server uVMs (i.e., Node.js and Ngnix), we used
the Apache ab benchmark tool to traverse all the web pages
of the documentation website. For the two in-memory key-
value store uVMs (i.e., Memcached and Redis), we used
the memtier benchmark tool [65] to generate key-value

store traffic which contained 20,000 requests with the set/get
operation ratio set to be 1:1.

The experiment result shows that the two web server uVMs
consumed drastically different memory: the Node.js uVM
demanded 300 MB of memory while the Nginx uVM only
required about 16 MB. The reason is that a substantial amount
of memory was used to support the Node.js runtime while
Nginx is known for its simplicity and lightweight. The
two in-memory key-value store uVMs also exhibited notable
differences in memory demand: memcached uVM consumed
35 MB of memory, and the Redis uVM needed 60 MB.

For uVMs of the same type, memory consumption can also
vary significantly. For example, we sampled the memory usage
of the Node.js uVM every second while it was running
the workload described above. Figure 1(a) depicts the result,
which shows that the memory usage of the uVM oscillated
between roughly 300 MB and 180 MB while the workload
was running. The oscillation is because of the fact that garbage
collection of the Node.js runtime was invoked periodically
(which caused the periodic drops in memory usage). After the
workload completed the memory usage remained at around
180 MB. Besides internal memory behavior of the application,
intra-type uVM memory consumption variance can also be
caused by the different requests that the uVM needs to
process. Figure 1(b) shows the per-second memory usage of
the Memcached uVM when it dealt with two streams of key-
value store traffic, both of which contained 20,000 requests.
The difference was that the set/get operation ratio of one
stream was 1/10 and the same ratio of the other was 10/1.
It can be seen that the uVM consumed much more memory
when processing the traffic with the 10/1 set/get operation
ratio than processing the other one. Another example is shown
in Figure 1(c), which showed the per-second memory usage
of the LevelDB uVM. In this experiment, we compared the
uVM memory consumption when the LevelDB application
filled values in sequential key order (“fillseq”) and random
key order (“fillrandom”). The result showed that there was
a 13% difference (278 MB for “fillseq” and 315 MB for
“fillrandom”).

The high cross-type and intra-type uVM memory usage
variances demonstrated above render it difficult to statically
set a proper memory value for uVMs when launching them
or during runtime. To ensure uVMs to function properly, it
is necessary to be conservative by choosing a high-end value
when setting the amount of VM startup memory. However,
this practice would cause memory waste which can devastate
memory-constrained hosts such as in edge and embedded
computing scenarios.

Observsation 2: Existing mechanisms for transferring
memory between VMs do not suit uVMs. After VMs
are started with the statically configured sizes of memory,
existing hypervisors employ mechanisms to move memory
across different VMs to support memory overcommitment
[66]. Most of these mechanisms adopt the idea of memory
ballooning [67], which utilizes “balloon drivers” in guest OSes

0 2 4 6 8 10

100

150

200

250

300

350

u
V

M
 M

e
m

o
ry

co
ns

u
m

pt
io

n
 (

M
B

)

Time (Second)

 fillseq
 fillrandom

(c)(b)

0 100 200 300 400

15
20

25
30
35

40
45

u
V

M
 M

e
m

o
ry

co
n

su
m

p
tio

n
 (

M
B

)

Time (Second)

 set/test operations ratio: 1/10
 set/test operations ratio: 10/1

0 20 40 60 80
100

150

200

250

300

workload endeduV
M

 M
e

m
o

ry
co

n
su

m
p

tio
n

 (
M

B
)

Time (Second)

workload started

(a)

Fig. 1: Illustrations of high intra-type uVM memory usage variance. Memory consumption of (a) a Node.js uVM workload; (b) a
Memcached uVM workload; and (c) a LevelDB uVM workload.

to transfer memory between VMs [51], [68]–[70]. However,
memory ballooning is not suitable for uVMs for the following
three reasons.

(1) Existing memory ballooning mechanisms require man-
ual activation by administrators or system management tools
for individual VMs [71], [72]. Although attempts have been
made to enable automatic ballooning for KVM, such efforts
remain incomplete [72]. Manual activation of memory bal-
looning for each uVM is inflexible, particularly considering
the notably larger number of uVM instances in the system
compared to traditional VMs.

(2) Even if memory ballooning can be efficiently activated
for individual uVMs, recent studies indicate that it responds
slowly to memory demand changes in VMs [69], [70],
[73]. Given the substantial variance in memory consumption
demonstrated by uVMs, memory ballooning is unlikely to be
effective for them.

(3) Enabling memory ballooning for uVMs would require
adding support to the unikernel guest OSes, such as incorpo-
rating balloon drivers into the unikernels. However, this would
contradict the minimalism philosophy of unikernels.

Observation 3: Existing cross-VM memory sharing mecha-
nisms are slow and costly for uVMs. The need of supporting
a large number of uVM instances on a single physical host
puts significant pressure on system memory consumption.
Effective and efficient cross-VM memory sharing mechanisms
are helpful to alleviate such pressure.

However, the existing VM memory sharing mechanisms are
not suitable for uVMs because they are mostly slow and incur
high costs. The existing mechanisms can be classified into
two groups: Kernel Same-page Merging (KSM) [47]–[49] or
Transparent Page Sharing (TPS) by VMware [50], [51]. Both
KSM and TPS work by periodically scanning the entire system
to identify and share identical memory pages. As a result, they
are not suitable for uVMs because content-based scanning is
slow and incurs high costs in deduplicating identical pages
[49], [53], [54].

Observation 4: Existing VM working set estimation and
idle memory reclamation mechanisms incur high overhead.
In addition to memory ballooning and cross-VM memory
sharing, idle memory reclamation is another way to improve
memory availability for VMs. Idle memory reclamation works
by first estimating VM working set which is the set of memory
pages that are being actively used by the VMs, and then

TABLE I: VM sharable physical memory pages comparison: uVMs
vs. traditional VMs.

Rumprun (unikernel) Lubuntu (lightweight
VMs Linux) VMs

U S F U S F
After boot 2% 10% 88% 58% 17% 25%
qsort 3% 16% 81% 62% 14% 24%
jpeg 3% 13% 84% 65% 13% 22%
sha 3% 17% 80% 59% 17% 24%

U: Unique pages | S: Shareable base pages | F: Freeable pages.

swapping non-working-set pages out to the swap area [51].
However, the existing ways of estimating VM working set,
such as random TLB invalidation followed by TLB misses
checking to identify working sets [51], incur high overhead to
achieve the goal [69], [74].

IV. SYSTEM DESIGN

A. On-demand uVM memory allocation and intra-type uVM
memory sharing

As demonstrated in Section III, uVMs exhibit a wide and
instantaneous variance in memory usage when compared to
VMs running traditional OSes. Therefore, the predetermined
VM startup memory allocation approach that is commonly
adopted by most hypervisors often leads to memory over-
allocation when hosting uVMs.

To address this issue, MEUNIK employs an on-demand
memory allocation approach which is based on the principles
of VM cloning and copy-on-write (CoW). Our experiments
show that the combination of these techniques provides greater
benefits to uVMs than to traditional VMs in terms of improv-
ing memory availability in the system.

Intra-type uVM memory sharing opportunities. In our
experiments, we compiled three benchmark programs, qsort,
jpeg, and sha, from the MiBench suite [75] into three types
of Rumprun unikernels [31]. For each type of unikernel, we
ran it as the guest OS of two Xen VMs, which therefore
are two uVMs of the same type, on an Odroid XU4 single-
board computer [76]. We measured the similarity among
the two uVMs’ physical memory pages at two time points:
immediately after the VM booted and after the benchmark
program had run for one minute. We also ran each of the
programs on two conventional Xen VMs, which used the
lightweight Linux distribution Lubuntu [77] as the guest OS,
and performed the same measurements for the two VMs. The

Machine RAM Machine RAM

App-1 unikernel VM memory Changed memory page

User A VM (yellow) User B VM (blue)

User C VM (brown) App-template VM (shaded)

50 MB 50 MB

50 MB

50 MB

Fig. 2: On-demand memory allocation and intra-type uVM memory
sharing.

physical memory sizes of a Rumprun uVM and a Lubuntu
VM were configured to 20 MB and 256 MB, respectively.

By comparing the similarity of the physical memory pages
between the two VMs, we classified the memory pages of
a VM into three groups: A page is a unique page if it
is different from any other pages across the two VMs. If
the two VMs have pages that are identical, one of those
identical pages is marked as a shareable base page, and the
remaining pages are considered as freeable pages. Table I
shows the percentages of the three categories of memory
pages in the uVMs and the conventional VMs. The results
show that Rumprun uVMs have a much higher potential for
memory sharing than the two conventional VMs. The main
reason is that traditional operating systems typically have
many computing tasks belonging to either the OS kernel or
the user, whereas unikernels only have a single task. This
reduces the number of memory modifications in uVMs, which
increases the opportunities for memory sharing. As a result,
uVMs of the same type can benefit significantly from memory
sharing.

uVM cloning and on-demand memory allocation. To take
advantage of intra-type uVM memory sharing opportunity, we
designed a uVM cloning mechanism that utilizes the principle
of copy-on-write (CoW) to achieve memory sharing among
uVMs of the same type and on-demand uVM memory alloca-
tion. Using this mechanism, a new uVM of an app is launched
by cloning the app-template uVM of the same app. An app-
template uVM is created by following the same process as
starting a uVM normally, except that it is paused after the
initialization phase, which includes loading the code and data
of the unikernel. The memory pages of the app-template uVM
are then made read-only. Instead of having their own memory
allocated by the hypervisor from the beginning, new uVMs are
cloned from the corresponding app-template uVMs and share
memory pages with them. This allows individual memory
allocation needs from the new uVMs to be met via the CoW
process [78]. Specifically, when a new uVM needs to write to
a memory page, a page fault is generated due to the attempt to
modify a read-only memory page. The control is transferred
to the hypervisor, which then allocates a new page for the new
uVM, copies the content of the faulting page to the new page,
and marks the new page writable to the new uVM.

Figure 2 illustrates the advantages of the above mechanism
using an example scenario. Let’s consider three users, A, B,
and C, each launching a uVM running the same application.
The estimated memory consumption of a uVM, depending on
the application’s operations, ranges from 20 MB to 50 MB
(such as the Memcached uVM demonstrated in Figure 1
(b)). To ensure the normal operation of the application, it is
advisable to assign a conservative 50 MB of memory when
launching each uVM. With the existing predetermined VM
startup memory allocation, a total of 150 MB of memory
would be allocated to the three uVMs (left part of Figure
2). However, considering the varying application demands,
a large portion of this allocated memory is likely to be
underutilized. In contrast, by utilizing the proposed uVM
cloning and on-demand memory allocation mechanism, only
50 MB of memory is initially required to launch the app-
template uVM, along with additional memory that is actually
needed by the uVMs during runtime (right part of Figure 2).

B. Single-page generic-template uVM and three-stage uVM
creation

Given the single-application nature of uVMs, it is expected
that many uVMs of different types, each running a distinct
application, are present in the system concurrently. Despite the
mechanisms described in Section IV-A, it is still necessary to
preallocate memory conservatively for a considerable number
of app-template uVMs. Furthermore, the mechanisms do not
utilize the potential memory sharing opportunities among
uVMs of different types.

Three-stage uVM creation. To address the above limitations,
we extend the uVM cloning mechanism to encompass the
creation of app-template uVMs. As a result, a three-stage
approach is used to launch individual uVMs.

(1) Stage-1: single-page generic-template uVM creation.
During its bootstrapping process, MEUNIK creates a special
VM called the generic-template uVM, which is used as a
template for creating app-template uVMs.

To create the generic-template uVM, the only real work to
perform is to set up the uVM’s page table such that every
virtual memory page (VMP) in the address space is linked to
a sole machine memory page (MMP) allocated for the generic-
template uVM. In regular VMs, VMPs in an address space are
not associated with any MMPs at the beginning. As a result,
all the page table entries (PTEs) are marked as invalid. When
an invalid PTE is referenced during runtime, the page fault
handling process takes place. This process maps an MMP from
the (conservatively) preallocated VM memory to the PTE, and
marks the PTE as valid. However, with our design for the
generic-template uVM, MEUNIK allocates just one MMP, and
associates it with all the PTEs. Subsequently, all the PTEs
are marked as valid from the start. This design eliminates the
need to preallocate memory for the generic-template uVM, as
well as all future app-template uVMs. MEUNIK then marks
the PTES to set all the VMPs as read-only and suspends the
VM. The generic-template uVM is now ready for future app-
template uVM creation.

MMP# Other
bits

0

0

0

...

...

...

PTE-0

PTE-1

PTE-N

MMP# Other
bits

1

0

0

...

...

...

PTE-0

PTE-1

PTE-N

MMP# Other
bits

2

3

0

...

...

...

PTE-0

PTE-1

PTE-N

0 ...PTE-2

MMP# Other
bits

1

4

0

...

...

...

PTE-0

PTE-1

PTE-N

0 ...PTE-2

MMP# Other
bits

2

5

0

...

...

...

PTE-0

PTE-1

PTE-N

6 ...PTE-2

0 ...PTE-3

Generic-template uVM
(1 MMP consumed)

page table

App1-template uVM
(2 MMP consumed)

page table

App2-template uVM
(3 MMP consumed)

page table

App1 uVM-1
(3 MMP consumed)

page table

App1 uVM-2
(4 MMP consumed)

page table

clone

clone

clone

clone

Fig. 3: An illustration of three-stage uVM creation (PTE stands for
“page table entry”, MMP stands for “machine memory page”).

(2) Stage-2: app-template uVM creation. When a new uVM
is launched to run an application that is different from any
current uVMs, an app-template uVM is created by cloning
the generic-template uVM. The cloned uVM is then resumed
and continues the booting process. which includes initializing
other VM data structures, such as virtual CPUs (vCPUs) and
I/O devices, and setting up the guest OS using the unikernel
of the new app. Since page tables are not shareable, the page
table is also copied, and the copied version is loaded into the
hardware page table base register (PTBR) of the cloned uVM.
The cloned uVM is paused before the first instruction of the
app code is executed. At this point, the cloned uVM is ready
to be used as a template for regular uVM creation.

(3) Stage-3: regular uVM creation. A regular uVM is
created by cloning the corresponding app-template uVM. The
cloned uVM is then resumed, and a copy of the app-template
uVM’s page table is loaded into the cloned uVM’s PBTR. The
cloned uVM then continues and functions as a regular uVM.

An illustrative example. Figure 3 illustrates how the three-
stage uVM creation works. As part of the system booting pro-
cess, a single-page generic-template uVM is created. Suppose
there are N VMPs in a uVM’s address space, the leftmost part
of Figure 3 shows the content of the generic-template uVM’s
page table. In this page table, the MMP number field of all
page table entries (PTEs) is set to 0, meaning all VMPs are
backed by the same MMP (i.e., MMP #0).

The generic-template uVM is then cloned into two app-
template uVMs. Suppose app1-template uVM only modifies
VMP0 during the initialization process, the VMP0 of this uVM
is allocated with a new MMP (#1). The remaining VMPs of
app1-template uVM are backed by MMP0, which is the single
MMP allocated for the generic-template uVM. Similarly, for
app2-template uVM, if the first two VMPs are modified during
its initialization process, only these two VMPs are allocated
with new MMPs.

Regular uVMs are cloned from the corresponding app-
template uVM. In the example, two regular app1 uVMs are

created. In the beginning, uVM-1 shares MMP1 with the app-
template uVM and shares MMP0 with the generic-template
uVM. Then, new MMPs are allocated to it as individual VMPs
are written.

Benefits analysis. The three-stage uVM creation design pro-
vides the following three main advantages.

First, each app-template uVM is cloned from the generic-
template uVM, where all the VMPs are mapped to the same
read-only MMP. This approach allows for on-demand memory
allocation via CoW as individual VMPs are written, ensuring
that only the necessary amount of memory is allocated for
each app-template uVM. In contrast, the conventional way
to create an app-template uVM would require allocating a
predetermined amount of memory, which can add up to a
significant amount considering the potentially high number
of app-template uVMs in the system. Worse, most of this
preallocated memory would remain unused as app-template
uVMs do not execute actual applications during runtime.

Second, each regular uVM is cloned from its corresponding
app-template uVMs. Therefore, uVMs of the same type share
the majority of their memory with the app-template uVM and
only request additional memory pages as needed due to the
usage of CoW-based page allocation.

Third, with the proposed three-stage uVM creation ap-
proach, unused VMPs in uVMs are backed by the same MMP
and considered to be valid. This approach allows unused mem-
ory to be shared across and within individual uVMs, resulting
in improved memory availability in the system. In essence,
MEUNIK enables lazy page allocation at the hypervisor level,
which is typically a functionality of the guest OS kernel. This
reduces the complexity of the uVM guest OS, conforming to
the minimalism philosophy of unikernels.

It is worth noting that our three-stage uVM creation design
incorporates CoW without incurring the usual copying over-
head associated with typical CoW scenarios. This is because
the copying phase can be bypassed if CoW is triggered as the
result of writing to the sole MMP allocated to the generic-
template uVM (which suggests that the page being written to
was unused). As a result, the CoW-based on-demand memory
allocation during the uVM creation phases exhibits similar
performance in terms of allocation time to the conventional
memory allocation approach.

C. Proactive memory releasing
As explained in Section III, existing approaches for return-

ing memory back to the hypervisor when system memory
pressure is high, such as memory ballooning, are not suitable
for uVMs. This is because the memory ballooning approach
(1) needs to be activated manually, (2) responds slowly to
memory demand changes in uVMs, and (3) requires substantial
changes to the unikernel. To address this issue, our solution
comprises two parts: automatic freed memory releasing (this
section) and idle memory reclamation (Section IV-D).

Automatic freed memory releasing (AFMR). During periods
of high memory pressure, AFMR automatically releases mem-
ory back to the hypervisor as soon as a uVM indicates that it

no longer needs it, such as when memory is explicitly freed
by the uVM. It can be achieved by adding a single hypercall
which is invoked whenever memory is freed by unikernel code.
The hypercall simply marks the MMPs corresponding to the
VMPs that have been freed as available. Additionally, it maps
the sole MMP allocated for the generic-template uVM to the
freed VMPs and sets the VMPs as read-only. This ensures that
the CoW-based on-demand page allocation mechanism can be
activated when the freed VMPs are reallocated and referenced
again.

AFMR can notably improve system memory availability
when the system is hosting unikernels that frequently perform
memory allocation and free operations. However, it may
also cause noticeable time overhead in certain scenarios. For
example, if a large amount of memory pages are reallocated
and written to shortly after being freed, an equivalent amount
of CoW page faults can occur. While the copying phase can be
skipped when the faulting page is backed by the sole MMP
allocated to the generic-template uVM, handling CoW page
faults can still be time-consuming, especially when handling
a large amount. To address this problem, we propose two
optimizations to complement AFMR.

Optimization 1: speculative allocation (SA). The first opti-
mization aims to improve the efficiency of memory realloca-
tion. When a CoW page fault occurs on VMP, it speculates
which additional VMPs are likely to be written to and preal-
locates MMPs for all those VMPs within one CoW page fault
handling process. As a result, the overhead associated with
multiple individual CoW page fault operations is reduced.

The SA algorithm leverages the principles of spatial and
temporal locality in memory references to predict whether to
preallocate an MMP for a VMP. It maintains two counters
for each VMP in an address space: the allocation count
and the hit count. The allocation count increases each time
the VMP is allocated with an MMP through either CoW or
preallocation. The hit count increases each time when the
VMP is written to for the first time since being allocated with
an MMP. When handling a CoW page fault, for each VMP in
a window of VMPs that follow the faulting page, the algorithm
speculatively preallocates an MMP for the VMP if it satisfies
all the conditions below:
• Cond-1: The VMP is mapped with the sole MMP allocated
to the generic-template VM. In other words, the VMP is not
currently allocated with an actual MMP.
• Cond-2: The VMP has been allocated with an actual MMP
before. This is because a VMP that has never been touched
does not provide any temporal information for prediction.
• Cond-3: The time elapsed since the last time the VMP was
freed is smaller than a threshold. In our prototype system
implementation, we use a threshold of 5 seconds.
• Cond-4: The current prediction hit ratio on the VMP, which
is the ratio between the VMP’s hit count and allocation count,
is greater than a threshold. For our prototype system, we set
this threshold to 95%.

If any VMP in the prediction window does not to meet one

1 2 3 4 5 6 7 8 9 10
0

5000

10000

15000

20000

25000

30000

35000

N
um

b
er

 o
f

pa
ge

s
a

cc
e

ss
e

d

Round index

 Portion of pages not accessed in the prev. round
 Portion of pages also accessed in the prev. round

0

20

40

60

80

100

P
er

ce
n

ta
ge

 o
f

pa
ge

s
a

ls
o

ac
ce

ss
ed

 in
 th

e
pr

ev
.

ro
un

d
(%

)

Fig. 4: Memory pages accessed for the Node.js uVM.

or more of these conditions one VMP, the SA algorithm aborts
for all the VMPs behind it.

Optimization 2: delayed releasing (DR). The second op-
timization aims to address the potential problem of AFMR
by delaying the release of MMPs back to the hypervisor.
In Section V, we discuss how the DR optimization was be
implemented while taking system efficiency into account.

D. uVM-aware working set estimation and idle memory recla-
mation

If memory pressure continues to be high even after proactive
memory releasing is enabled, MEUNIK takes the approach of
reclaiming memory that is not being actively used by the VMs.
In other words, it targets idle memory that does not belong to
the VMs’ working sets.

Existing VM idle memory reclamation solutions typically
involve two steps. First, the hypervisor determines which VMs
should have their MMPs reclaimed. A common approach is to
calculate the "price" that a VM is paying for each MMP, and
then reclaim MMPs from VMs that are paying a lower price
and reallocate them to VMs that are willing to pay a higher
price [51]. In the second step, the hypervisor estimates the
working sets of the target VMs and reclaims memory pages
that are not part of the working sets.

However, existing idle memory reclamation solutions do not
fit uVMs well for two reasons: First, calculating page price for
every VM in the system is prohibitively expensive considering
the much larger number of VMs in the case of uVMs. Second,
the existing methods for working set estimation, such as
random TLB invalidation followed by TLB misses checking
to identify the working sets [51], are complex and incur high
overhead [69], [74].

We observed that the working sets of uVMs are more stable
over time than those of conventional VMs. To illustrate this
observation, we conducted an experiment in which a uVM web
server running Node.js was set up to host a documentation
website consisting of 1,000 static web pages. We used the
Apache ab benchmark tool on a separate machine to browse
through the entire wedbsite. We repeated the experiment for
10 rounds, and tracked how memory pages of the uVM were
accessed during each round. Figure 4 shows the results of
the experiment. The working set of the uVM remained stable
throughout the 10 rounds of the experiment, with an average
of 95% of the memory pages accessed in each round also

being accessed in the previous round. The reason for highly
stable working sets in uVMs is that a uVM only runs a single
application only the necessary OS kernel functionalities. In
contrast, a conventional VM typically runs multiple processes
alongside with the full OS kernel. As a result, working sets
of conventional VMs are more prone to change as active
processes change over time.

Given the observation that uVMs tend to have stable work-
ing sets, we propose a uVM-aware working set estimation
and idle memory reclamation mechanism based on the simple
least recently used (LRU) heuristic. With our solution, the
hypervisor maintains a queue of all the MMPs that have
been allocated to the uVMs in the system. When an MMP
is referenced, it is moved to the back of the queue. When
the system experiences high memory pressure, the hypervisor
reclaims a certain amount of MMPs from the front of the
queue, as configured by the user. Our solution is lightweight
compared to existing solutions in two ways. First, it treats
all the MMPs in the system as a whole, rather than checking
individual uVMs to determine which ones should have their
memory reclaimed. Second, the LRU heuristic is much more
lightweight than existing approaches such as random TLB
invalidation followed by TLB misses checking.

V. SYSTEM IMPLEMENTATION

Implementation setup. We have implemented the proposed
MEUNIK system on Xen hypervisor version 4.10 [79]. In Xen,
each VM is referred to as a domain. For the remainder of this
paper, we will use the terms "domain" and "VM" interchange-
ably. The Dom0, which is the privileged management domain
for the unprivileged domains (referred to as DomUs), runs on
Linux 4.4 as the operating system.

We chose paravirtualization (PV) as the virtualization tech-
nique for our prototype system. There are two main reasons
for this decision. First, our design involves participation from
VMs, such as proactive memory releasing, which requires
modifications to the VM guest OS. Second, unikernels, which
are the guest OSes of unikernel VMs, are typically built before
deployment due to their single-application nature. As a result,
changing unikernels to add MEUNIK support would not incur
much deployment overhead.

The unikernels that have been integrated with our prototype
system are Rumprun [31], which is a NetBSD-based library
OS that supports the development and execution of existing
application code as unikernels, and ClickOS [30], which is
a virtualized software router platform based on the Click
Modular Router architecture [80].

Xen Background. To speed up memory translation, Xen’s PV
MMU (memory management unit) model lets a guest OS map
its virtual memory pages (VMPs) directly to machine memory
pages (MMPs) in its page tables, instead of mapping them to
the guest’s physical memory pages (PMPs) [81]. Thus, guest
OSes’ page tables are also called V2M tables. A V2M table
can be updated by the hypervisor and the guest OS, but the
guest must use hypercalls provided by the hypervisor to do so.
The hypervisor maintains another page table called the P2M

table, which records the mappings from the guest’s PMPs to
MMPs. The P2M table is readable to the guest, and it helps
the guest to populate the V2M table as unmapped VMPs are
referenced.

CoW-based page allocation. To implement the CoW-based
page allocation mechanism, an MMP to be shared is first set
as read-only by clearing the writable bit of the corresponding
V2M table entry and then marked as shared in its page
descriptor. This can be done by either the hypervisor (when
setting up a generic-template uVM or an app-template uVM),
or the guest OS (when exercising AFMR). When a shared
MMP is modified, a page fault is generated. The hypervisor
handles this page fault by allocating a new MMP for the uVM
that attempted to modify the faulting MMP. The hypervisor
then copies the content of the faulting MMP to the newly
allocated MMP and updates the uVM’s corresponding V2M
entry accordingly. If a page fault is not due to an attempt to
modify a read-only page, the hypervisor injects the page fault
back to the uVM and lets the uVM handle it.

Three-stage uVM creation. To create the generic-template
uVM, the hypervisor only needs to initialize the V2M table
by mapping all the VMPs of the guest OS to a single MMP
dedicated to the generic-template uVM and setting the VMPs
as shared and read-only. To create an app-template uVM,
the hypervisor takes a copy of the generic-template uVM,
duplicates its V2M table, and continues the uVM startup
process. This includes loading the unikernel image, setting up
resources related to the vCPUs and I/O devices, and finishing
the application initialization. During the startup process, all
newly allocated MMPs due to CoW page allocation are marked
as read-only, except for those that cannot be shared (e.g.,
MMPs for the page table, and resources related to vCPUs
and I/O devices). The app-template uVM is suspended when
it is ready to execute the first instruction of the application
code. Regular uVMs are created by cloning the corresponding
app-template uVMs. During this process, the hypervisor only
needs to allocate and initialize the memory for contents that
cannot be shared. The regular uVM shares the majority of its
memory with the app-template uVM and only requests new
memory as needed.

AFMR and its optimizations. The AFMR (automatic freed
memory releasing) mechanism was implemented by instru-
menting the Rumprun framework so that a hypervisor hy-
percall is made whenever a memory-freeing operation is
performed in the guest OS. The details of the AFMR hypercall
actions are discussed in Section IV-C.

The SA algorithm maintains two counters for each VMP in
the address space: the allocation count and the hit count. The
allocation count is increased by one when the VMP is allocated
with an MMP, through either CoW or SA. The hit count is
incremented by one each time the VMP is first modified since
it was last allocated with an MMP. In our implementation, we
set the hit count of a VMP when it is released back to the
hypervisor via AFMR. Specifically, when serving an AFMR
hypercall, the hypervisor checks the dirty bit of the V2M table

entry which contains the VMP being freed. If the dirty bit is
set, the hypervisor increments the hit count of the VMP by
one.

To implement the DR mechanism, we used a queue to track
the MMPs that have been recently freed by the guest OS. We
modified the buddy page allocator of the Rumprun platform
such that MMPs in the queue are used to satisfy memory
allocation requests in the guest OS first. If an MMP in the
queue is selected to satisfy a memory allocation request, it
is removed from the queue. A kernel thread in the guest is
then used to periodically examine the MMPs in the queue and
invoke the AFMR hypercall to release the MMPs that have
remained in the queue for more than a threshold period of
time (which is set to 5 seconds in our prototype system).

uVM-aware idle memory reclamation. The uVM-aware idle
memory reclamation mechanism described in Section IV-D
treats all the MMPs that have been allocated to the individual
uVMs as a whole and applies a simple heuristic of LRU (Least
Recently Used) to select pages for reclamation. In our imple-
mentation, we used the clock algorithm [82] to approximate
LRU. The clock algorithm uses the dirty bit of individual
MMPs (which can be found in the corresponding V2M table
entry) to determine which MMP should be reclaimed next.
Due to space constraints, we omit the details of the algorithm.
One notable issue that occurred in our implementation is that
the clock algorithm clears the dirty bit of all the allocated
MMPs periodically. This created a problem for our system
because the dirty bit of individual MMPs is also used in the
speculative allocation mechanism. To address this problem,
we duplicated the dirty bit of all the allocated MMPs into a
bitmap (which is called the shadow dirty bitmap) each time
the clock algorithm clears the MMPs’ dirty bit. By doing this,
we can safely use the original dirty bit of individual MMPs
for the clock algorithm while using the shadow dirty bitmap
for speculative allocation.

Dealing with network devices. Since the DomU uVMs are
cloned from the app-template uVMs, uVMs of the same type
all have the same MAC and IP addresses. Existing solutions
use network tools that are readily available in conventional
OSes to change VM MAC/IP addresses at runtime [39].
However, these solutions are not applicable for uVMs because
of the app-specific nature of unikernels. Our solution is to
assign new MAC/IP addresses to newly cloned uVMs on the
back-end network device driver, while keeping the MAC/IP
addresses on the front-end which are inherited from the
app-template uVM unchanged. Since the shared ring buffer
between Dom0 and DomU is placed at front-end driver in
DomU, the back-end driver in Dom0 is able to differentiate
ownership of network packets and acts as a proxy accordingly.
For outgoing packets that a uVM (i.e., DomU) put into the
ring buffer, the back-end driver in Dom0 fetches them and
replaces the source MAC/IP addresses with the new ones
assigned to that uVM. For incoming packets, the back-end
driver is able to tell which uVM is the receiver by examining
the destination MAC/IP address. It then replaces the packet

ch
am

ele
on

delta
blu

e

dulw
ic

h_lo
g

fa
nnku

ch
flo

at
go

htm
l5

lib

js
on_lo

ads

m
ako

m
ete

or_
co

nte
st

nqueens

re
gex_

co
m

pile

re
gex_

v8

ric
hard

s

sp
ect

ra
l_

norm

0

2

4

6

8

1 0

1 2

1 4

1 6

E
xe

cu
tio

n
tim

e
 d

iff
e

re
nc

e
 (

m
s) E x e c u tio n tim e d iffe re n c e

 C o W c o u n t

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

C
o

W
 c

o
un

t

ch
am

ele
on

delta
blu

e

dulw
ic

h_lo
g

fa
nnku

ch
flo

at
go

htm
l5

lib

js
on_lo

ads

m
ako

m
ete

or_
co

nte
st

nqueens

re
gex_

co
m

pile

re
gex_

v8

ric
hard

s

sp
ect

ra
l_

norm
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0
 B a s e lin e
 u V M c lo n in g

E
xe

cu
tio

n
tim

e
 (

m
s)

0

2 0

4 0

6 0

8 0

1 0 0

E
xe

cu
tio

n
 ti

m
e

 o
ve

rh
ea

d
(%

)

ch
am

ele
on

delta
blu

e

dulw
ic

h_lo
g

fa
nnku

ch
flo

at
go

htm
l5

lib

js
on_lo

ads

m
ako

m
ete

or_
co

nte
st

nqueens

re
gex_

co
m

pile

re
gex_

v8

ric
hard

s

sp
ect

ra
l_

norm
0

1 0

2 0

3 0

4 0

5 0

6 0
 B a s e lin e
 u V M c lo n in g

M
em

or
y

u
sa

g
e

(M
B

)

0

2 0

4 0

6 0

8 0

1 00

M
em

or
y

u
sa

g
e

 r
ed

u
ct

io
n

 (
%

)

(c) Execution time difference vs. CoW count

(b) Execution time

(a) Memory consumption

Fig. 5: Python benchmark uVMs experiment results.

destination MAC/IP addresses with the original ones and
places the packets in the ring buffer of the receiving uVM.

VI. SYSTEM EVALUATION

We evaluate our prototype system on a desktop server with
an 8-core 3.3 GHz CPU and 32 GB of physical memory. The
unikernels used in the experiments were compiled from the
following three groups of programs and applications:
• Python benchmark program unikernels: To evaluate MEU-
NIK’s performance when running unikernels built from small
programs, we selected and compiled benchmark programs
from the pyperformance Python performance benchmark
suite [83] into Python benchmark unikernels. We skipped
programs that involve user interaction, as we were only
interested in evaluating uVM execution time performance. We
also skipped programs that were similar to the ones that had
already been selected. As a result, we selected 15 programs,
as shown in the evaluation results later. To build a Python
benchmark uVM, we first fed the code of a selected program
and the Python interpreter to the Rumprun platform. Rumprun
then generated the unikernel, which was used as the guest OS
to start a uVM.
• Server application unikernels: We compiled four popular
server applications, Node.js, Nginx, Memcached, and
Redis into Rumprun unikernels, and built four app uVMs
using these unikernels.
• ClickOS middlebox unikernels: We ran two ClickOS mid-
dleboxes, IP router and Firewall, as uVMs, and evaluated
MEUNIK’s performance of hosting network-oriented uVMs.

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

M
em

o
ry

 u
sa

ge
 (

M
B

)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

1 0

2 0

3 0

4 0

5 0

M
em

o
ry

 u
sa

ge
 (

M
B

)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

M
em

o
ry

 u
sa

ge
 (

M
B

)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

5

1 0

1 5

2 0

2 5

M
em

o
ry

 u
sa

ge
 (

M
B

) Memcached RedisNginxNode.js

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

2 5

3 0

3 5

4 0

R
u

nn
in

g
 t

im
e

(s
e

co
nd

)

(b) Execution time

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

2 5

3 0

3 5

4 0

4 5

R
u

nn
in

g
 t

im
e

(s
e

co
nd

)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

8

1 0

1 2

1 4

1 6

R
u

nn
in

g
tim

e
 (

se
co

nd
)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

2 0

2 5

3 0

3 5

4 0

R
u

nn
in

g
 t

im
e

(s
e

co
nd

)

(a) Memory consumption
Node.js Nginx

NginxNode.js

RedisMemcached

Memcached Redis

(c) CoW count

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

C
o

W
 c

ou
nt

 (
x

1
00

0
)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

0

5

1 0

1 5

2 0

2 5

C
o

W
 c

ou
nt

 (
x

1
00

0
)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

2

3

4

5

6

C
o

W
 c

ou
nt

 (
x

1
00

0
)

B a s e l in e u V M
c lo n in g

c lo n in g
+ A F M R

c lo n in g
+ A F M R

+ S A

c lo n in g
+ A F M R

+ D R

5

6

7

8

9

1 0

C
o

W
 c

ou
nt

 (
x

1
00

0
)

Fig. 6: Application uVMs experiment results.

TABLE II: Memory pages distribution of Python microbenchmark uVMs (page size is 4KB)

chameleon deltablue dulwich_log fannkuch float
Shared Unique Shared Unique Shared Unique Shared Unique Shared Unique

text section 1,462 0 1,462 0 1,462 0 1,462 0 1,462 0
data sections 1,410 87 1,444 53 1,376 121 1,470 27 1,415 82
kernel stack 1,600 0 1,600 0 1,587 13 1,600 0 1,600 0

user stack & dyn. alloc. mem. 4,315 1,998 1,455 510 2,063 2194 1,954 86 1,312 4384
VM-specific info 0 72 0 72 0 72 0 72 0 72

Total 8,787 2,157 5,961 635 6,488 2,400 6,486 185 5,789 4,538
(percentage) (80.29%) (19.71%) (90.37%) (9.63%) (73.00%) (27.00%) (97.23%) (2.77%) (56.06%) (43.94%)

go html5lib json_loads mako meteor_contest
Shared Unique Shared Unique Shared Unique Shared Unique Shared Unique

text section 1,462 0 1,462 0 1,462 0 1,462 0 1,462 0
data sections 1,425 72 1,334 163 1,444 53 1,401 96 1,452 45
kernel stack 1,600 0 1,587 13 1,600 0 1,600 0 1,600 0

user stack & dyn. alloc. mem. 1,650 1,242 2,404 6,553 3,469 341 2,307 3,108 1,550 618
VM-specific info 0 72 0 72 0 72 0 72 0 72

Total 6,137 1,386 6,787 6,801 7,975 466 6,770 3,276 6,064 735
(percentage) (81.58%) (18.42%) (49.95%) (50.05%) (94.48%) (5.52%) (67.39%) (32.61%) (89.19%) (10.81%)

nqueens regex_compile regex_v8 richards spectral_norm
Shared Unique Shared Unique Shared Unique Shared Unique Shared Unique

text section 1,462 0 1,462 0 1,462 0 1,462 0 1462 0
data sections 1,465 32 1,379 118 1,450 47 1,451 46 1467 30
kernel stack 1,600 0 1,587 13 1,600 0 1,600 0 1600 0

user stack & dyn. alloc. mem. 1,563 182 2,246 3,312 2,387 423 1,868 213 1945 97
VM-specific info 0 72 0 72 0 72 0 m72 0 72

Total 6,090 286 6,674 3,515 6,899 542 6,381 331 6,474 199
(percentage) (95.51%) (4.49%) (65.50%) (34.50%) (92.72%) (7.28%) (95.07%) (4.93%) (97.02%) (2.98%)

TABLE III: Memory pages distribution of application uVMs (page size is 4KB)

Node.js Nginx Memcached Redis
Shared Unique Shared Unique Shared Unique Shared Unique

text section 2,512 0 879 0 551 0 618 0
data sections 2,718 388 824 61 896 92 844 169
kernel stack 1,650 14 1,650 14 1,587 13 1651 13

user stack & dyn. alloc. mem. 27,458 39,740 1,732 1,046 3,871 5,354 5462 8,607
VM-specific info 0 520 0 44 0 136 0 136

Total 34,338 40,662 5,085 1,165 6,905 5,595 8575 8925
(percentage) (45.78%) (54.22%) (81.36%) (18.64%) (55.24%) (44.76%) (49.00%) (51.00%)

A. uVM memory consumption reduction

We first evaluated how MEUNIK improves system memory
availability with its uVM cloning and on-demand page allo-

cation mechanisms.

Python benchmark program uVMs. In the first experiment,
we measured the baseline cases where each Python benchmark

After routing
1 packet

After routing
500 packets

After routing
1500 packets

0

1

2

3

4

5

6

7

M
e

m
os

ry
 u

sa
g

e
 (

M
B

)
 Basline
 uVM cloning

After processing
1 packet

After processing
50 packets

After processing
100 packets

0

1

2

3

4

5

6

7

M
e

m
or

y
u

sa
g

e
 (

M
B

)

(b)(a)

Fig. 7: ClickOS middlebox uVMs, (a) IP router and (b) Firewall,
experiment results.

uVM was run with the unmodified Xen hypervisor. Since the
uVM was running as a conventional VM, it was conservatively
configured with 64 MB of machine memory. We then ran
each Python benchmark uVM with our MEUNIK system. We
measured the actual memory consumption of each uVM at
the end of each run. We repeated the experiment three times
and calculated the average memory consumption. Figure 5(a)
shows the results of this experiment. As can be seen, the
uVM cloning and on-demand memory allocation mechanisms
significantly reduce memory consumption for each uVM.
Five Python benchmark uVMs (fannkuch, json_loads,
nqueens, richards, and spectral_norm) see over
95% memory consumption reduction compared to the baseline
cases. The uVM that has the smallest consumption reduction
(html5lib) still enjoys about 50% reduction.

It is worth noting that in the baseline cases, each uVM was
assigned 64 MB of machine memory, even though the actual
memory consumption varied between 26 MB and 55 MB. This
means that a significant amount of memory was left unused.
In contrast, with MEUNIK, only the memory that is actually
consumed by each uVM is allocated. This results in significant
improvement in system memory availability.

We then measured the time needed to run each benchmark
once with the uVM. Figure 5(b) shows the results. We can
see that uVM workloads run with MEUNIK take more time
than those with the original hypervisor. However, the time
overhead is generally low, with 12 of the 15 uVMs having
an overhead of less than 10%. The reason for the execution
time overhead is because MEUNIK allocates memory pages
on demand using the CoW mechanism. Figure 5(c) plots the
execution time overhead (black line, left Y) and the CoW page
fault count (blue line, right Y). It shows that the two lines
roughly overlap, which supports our explanation above.

Sever application uVMs. We performed the same experiment
as above for the four app uVMs. In the experiment, the
app uVMs performed the workloads described in Section III
“Observation 1”. The first (the leftmost) bar in each plot of
Figure 6 shows the results for the baseline cases, and the
second bar shows the results for cases with uVM cloning
and on-demand memory allocation enabled. Similar to the
Python benchmark uVMs, all four app uVMs see consumption
reduction at 45% or above with MEUNIK. The execution time
overhead for Node.js, Memcached, and Redis is all less
than 2%, while the overhead for Nginx is 8%.

0 50 100 150 200 250 300
0

50

100

150

200

250

300

 (1) uVM cloning
 (2) uVM cloning + AFMR
 (3) uVM cloning + AFMR + SA
 (4) uVM cloning + AFMR + DR

M
e

m
o

ry
 u

sa
g

e
(M

B
)

Time (second)

(1)

(4)
(3)
(2)

Fig. 8: Memory usage of Node.js uVM under a simulated long
periodic web usage scenario.

ClickOS network middlebox uVMs. We also measured
memory consumption reduction for the two ClickOS middle-
box uVMs. For the IP router middlebox uVM, we measured its
actual memory consumption after 1, 500, and 1,500 network
packets had been routed. For the Firewall uVM, we took
the measurement after 1, 50, and 100 network packets have
been processed by the firewall. Figure 7 shows the results
from which two observations can be made. First, the uVM
cloning mechanism significantly reduced the memory con-
sumption for the two middlebox uVMs. Second, in the baseline
cases, memory consumption remains constant across the three
measurement timings. However, in the cases with MEUNIK,
uVM memory consumption increases as more packets are
processed but remains significantly lower than in the baseline
cases. To understand the reason for the second observation,
we examined the source code of the two middlebox programs.
We found that both programs request a large amount of heap
memory on startup. Therefore, the explanation is that with
the original hypervisor, all the requested memory is actually
allocated immediately upon request. With MEUNIK’s three-
stage uVM creation design, memory pages are allocated lazily
by the hypervisor (Section IV-B), which results in improved
system memory availability.

B. uVM memory pages distribution

The major source of uVM memory consumption reduction
by MEUNIK is memory page sharing between uVMs of the
same type and the app-template uVM. During our experiments,
we collected statistics about how page sharing among uVMs
is distributed among different types of memory pages, such as
text, data, stack/heap of kernel code, stack/heap of app code,
and VM-specific info. Table II shows the results of the 15
Python benchmark program uVMs, and Table III presents the
results of the 4 server application uVMs. In the tables, the
memory pages of each uVM are broken down into two parts:
the memory pages that are shared with the corresponding app-
template uVM and therefore saved compared to the baseline
case (listed in the "Shared" columns) and memory pages that
are unique (listed in the "Unique" columns). The results show
that uVM memory page changes are mostly made on user
program stacks and heaps. This is also the reason why the
server application uVMs saw lower percentages of memory

1 0 % 2 0 % 3 0 % 4 0 % 5 0 %
4 0

6 0

8 0

1 0 0

P
a

ge
 h

it
ra

te
 (

%
)

P a g e r e c la m a t io n r a t e c o n f ig u r e d

 L R U
 R a n d o m

Fig. 9: Evaluating LRU-based idle memory reclamation.

saving - server applications run longer and have more complex
operations than the Python benchmark programs.

C. Effectiveness of AFMR and its optimizations

AFMR (automatic freed memory releasing) is designed to
achieve more aggressive memory savings when the system is
under high memory pressure. We conducted two experiments
to evaluate the effectiveness of AFMR and its two optimiza-
tions SA (speculative allocation) and DR (delayed releasing).

In the first experiment, we evaluated the performance of
AFMR and the two optimizations for the four app uVMs
executing the workloads described in Section III “Observation
1”. The rightmost 3 bars in each plot of Figure 6 show
the results of this experiment. As shown in Figure 6(a), the
Node.js uVM benefited the most from AFMR, consuming
70.2% less memory than the baseline case, compared to
45.8% with uVM cloning alone. However, the memory saving
enabled by AFMR comes at the price of execution time
overhead. As shown in Figure 6(b), the time overhead for the
Node.js uVM is 26.1% with AFMR enabled, compared to
1.1% with uVM cloning alone. The increase in time overhead
is due to the increased number of CoW page faults caused by
AFMR. As shown in Figure 6(c), the CoW count with AFMR
was 18 times that of uVM cloning alone. SA and DR are
designed to address the high time overhead issue. Both of them
work well for the Node.js uVM. AFMR with SA achieves
a 68.5% memory consumption reduction while incurring 14%
of time overhead compared with the baseline. AFMR with
DR achieves a 62% memory consumption reduction with
a time overhead of just 2%. AFMR achieves insignificant
improvement in memory consumption reduction for Nginx,
Memcached, and Redis uVMs. This is because these three
apss have much less memory activities than Node.js.

The Node.js workload used in the first experiment com-
pletes in less than 4 seconds. We conducted a more practical
evaluation of the different mechanisms of MEUNIK. We sim-
ulated a long-term periodic web usage scenario by having a
web client sequentially request 500 files with different sizes
from the Node.js web server uVM. The first request was
made 30 seconds after the experiment started, and there was a
20-second idle period between each batch of file requests. The
whole experiment lasted for 300 seconds and was repeated 5
times. Figure 8 shows the experiment results. As can be seen,
AFMR is effective in achieving significantly more memory
consumption reduction than with uVM cloning alone. SA is
able to accurately predict memory activities when a new batch

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Unidirectional
comm. (sending)

N
e

tw
o

rk
 t

hr
ou

g
h

pu
t

(M
b

p
s)

 Baseline
 uVM cloning

Bidirectional
comm.

Unidirectional
comm. (receiving)

Fig. 10: Dom0-DomU network overhead.

of requests starts and preallocate memory pages accordingly.
As a result, SA maintains the memory savings achieved by
AFMR while incurring fewer memory usage fluctuations.

D. LRU-based idle memory reclamation

We compared the performance of MEUNIK’s LRU-based
idle memory reclamation to that of a random reclamation
policy. The workload used in this experiment was the same
as the one described in Section IV-D. Memory reclamation
for a configured percentage was performed after 9 rounds of
the experiment. We measured the memory page hit rate during
the 10th round of the experiment. Figure 9 shows the results
of the experiment. It can be seen that the LRU implementation
achieves a 100% hit rate when the reclamation percentage is
less than 30%. The hit rates for 40% and 50% reclamation
percentages are 89% and 75% respectively, all of which are
significantly higher than the random reclamation approach.

E. Network overhead

As discussed in Section V, we addressed the issue of
duplicated MAC/IP addresses in uVMs of the same type by
having the network device back-end driver act as a proxy
to properly substitute MAC/IP addresses for outgoing and
incoming network packets. To evaluate the overhead of this
approach, we compiled the iperf [84] server program as a
uVM and ran it in a Xen DomU. We then ran the iperf
client program in Dom0 to measure the network throughput
between Dom0 and DomU. The results (Figure 10) show
that the average network throughput reduction caused by our
implementation is about 10%.

VII. CONCLUSION

In this paper, we demonstrated the issues of existing solu-
tions for uVM memory management using thorough experi-
mental results. We then proposed MEUNIK a framework for
hypervisors to manage memory resources of unikernel-based
VMs (uVMs). The evaluation results on our prototype system
suggest that our solutions are effective and incur marginal
overhead.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
feedback. This work was supported in part by NSF Award
#1943269.

REFERENCES

[1] D. R. Engler, M. F. Kaashoek, and J. O’Toole, “Exokernel: An operating
system architecture for application-level resource management,” in ACM
Symposium on Operating Systems Principles (SOSP), 1995.

[2] G. Ammons, J. Appavoo, M. A. Butrico, D. D. Silva, D. Grove,
K. Kawachiya, O. Krieger, B. S. Rosenburg, E. V. Hensbergen, and
R. W. Wisniewski, “Libra: a library operating system for a jvm in a
virtualized execution environment,” in ACM SIGPLAN/SIGOPS Inter-
national Conference on Virtual Execution Environments (VEE), 2007.

[3] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C.
Hunt, “Rethinking the library OS from the top down,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2011.

[4] A. Madhavapeddy, R. Mortier, C. Rotsos, D. J. Scott, B. Singh, T. Gazag-
naire, S. Smith, S. Hand, and J. Crowcroft, “Unikernels: library operating
systems for the cloud,” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2013.

[5] A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire, D. Sheets,
D. J. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam, J. Crowcroft,
and I. M. Leslie, “Jitsu: Just-in-time summoning of unikernels,” in
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2015.

[6] S. Kuenzer, A. Ivanov, F. Manco, J. Mendes, Y. Volchkov, F. Schmidt,
K. Yasukata, M. Honda, and F. Huici, “Unikernels everywhere: The case
for elastic cdns,” in ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE), 2017.

[7] Y. Zhang, J. Crowcroft, D. Li, C. Zhang, H. Li, Y. Wang, K. Yu,
Y. Xiong, and G. Chen, “Kylinx: A dynamic library operating system for
simplified and efficient cloud virtualization,” in 2018 USENIX Annual
Technical Conference, USENIX ATC 2018, Boston, MA, USA, July 11-
13, 2018, 2018.

[8] H. Kuo, D. Williams, R. Koller, and S. Mohan, “A linux in unikernel
clothing,” in EuroSys, 2020.

[9] A. Raza, P. Sohal, J. Cadden, J. Appavoo, U. Drepper, R. Jones,
O. Krieger, R. Mancuso, and L. Woodman, “Unikernels: The next stage
of linux’s dominance,” in Workshop on Hot Topics in Operating Systems
(HotOS), 2019.

[10] P. C. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise
of serverless computing,” Commun. ACM, 2019.

[11] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift, “Peeking be-
hind the curtains of serverless platforms,” in USENIX Annual Technical
Conference (ATC), 2018.

[12] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Serverless computation
with openlambda,” in USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2016.

[13] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara, “Server-
less computing: An investigation of factors influencing microservice
performance,” in IEEE International Conference on Cloud Engineering
(IC2E), 2018.

[14] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau, “SOCK: rapid task provisioning
with serverless-optimized containers,” in USENIX Annual Technical
Conference (ATC), 2018.

[15] R. Koller and D. Williams, “Will serverless end the dominance of linux
in the cloud?” in Workshop on Hot Topics in Operating Systems (HotOS),
2017.

[16] H. Fingler, A. Akshintala, and C. J. Rossbach, “USETL: unikernels for
serverless extract transform and load why should you settle for less?”
in ACM SIGOPS Asia-Pacific Workshop on Systems (APSys), 2019.

[17] P. Liu, D. Willis, and S. Banerjee, “Paradrop: Enabling lightweight
multi-tenancy at the network’s extreme edge,” in ACM/IEEE Symposium
on Edge Computing (SEC), 2016.

[18] K. Bhardwaj, M. Shih, P. Agarwal, A. Gavrilovska, T. Kim, and
K. Schwan, “Fast, scalable and secure onloading of edge functions using
airbox,” in ACM/IEEE Symposium on Edge Computing (SEC), 2016.

[19] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to dance:
agile VM handoff for edge computing,” in ACM/IEEE Symposium on
Edge Computing (SEC), 2017.

[20] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers
via docker container migration,” in ACM/IEEE Symposium on Edge
Computing (SEC), 2017.

[21] Y. Ren, V. Nitu, G. Liu, G. Parmer, T. Wood, A. Tchana, and R. Kennedy,
“Efficient, dynamic multi-tenant edge computation in edgeos,” CoRR,
2019.

[22] P. Hao, Y. Bai, X. Zhang, and Y. Zhang, “EdgeCourier: An Edge-
hosted Personal Service for Low-bandwidth Document Synchronization
in Mobile Cloud Storage Services,” in ACM/IEEE Symposium on Edge
Computing (SEC), 2017.

[23] Y. Bai, P. Hao, and Y. Zhang, “A Case for Web Service Bandwidth
Reduction on Mobile Devices with Edge-hosted Personal Services,” in
IEEE Infocom, 2018.

[24] A. Bratterud, A. Walla, H. Haugerud, P. E. Engelstad, and K. M.
Begnum, “Includeos: A minimal, resource efficient unikernel for cloud
services,” in IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom), 2015.

[25] lsub.org, “Removing (most of) the software stack from the cloud,” http:
//lsub.org/ls/clive.html.

[26] Galois, Inc., “Halvm,” https://galois.com/project/halvm/.
[27] K. Stengel, F. Schmaus, and R. Kapitza, “Esseos: Haskell-based tailored

services for the cloud,” in International Workshop on Adaptive and
Reflective Middleware (ARM), 2013.

[28] runtimejs.org, “Javascript library operating system for the cloud,” http:
//runtimejs.org/.

[29] erlangonxen.org, “Ling,” https://erlangonxen.org/.
[30] J. Martins, M. Ahmed, C. Raiciu, V. A. Olteanu, M. Honda, R. Bifulco,

and F. Huici, “Clickos and the art of network function virtualization,” in
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2014.

[31] rumpkernel, “Rumprun,” https://github.com/rumpkernel/rumprun.
[32] P. Olivier, D. Chiba, S. Lankes, C. Min, and B. Ravindran, “A binary-

compatible unikernel,” in ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments (VEE), 2019.

[33] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov, “Osv - optimizing the operating system for virtual ma-
chines,” in USENIX Annual Technical Conference (ATC), 2014.

[34] C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A. Kalod-
ner, V. Kulkarni, D. A. S. de Oliveira, and D. E. Porter, “Cooperation
and security isolation of library oses for multi-process applications,” in
EuroSys, 2014.

[35] C. Tsai, D. E. Porter, and M. Vij, “Graphene-sgx: A practical library
OS for unmodified applications on SGX,” in USENIX Annual Technical
Conference (ATC), 2017.

[36] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
ACM SOSP, 2003.

[37] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Linux Symposium, 2007.

[38] Xen.org, “Xen Project Software Overview,” https://wiki.xen.org/wiki/
Xen_Project_Software_Overview.

[39] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,
G. M. Voelker, and S. Savage, “Scalability, fidelity, and containment
in the potemkin virtual honeyfarm,” in ACM Symposium on Operating
Systems Principles (SOSP), 2005.

[40] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin, S. M.
Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan, “Snowflock:
rapid virtual machine cloning for cloud computing,” in EuroSys, 2009.

[41] J. Zhi, S. Suneja, and E. de Lara, “The case for system testing with swift
hierarchical VM fork,” in USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud), 2014.

[42] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and
H. Chen, “Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting,” in International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2020.

[43] C. Lupu, A. Albisoru, R. Nichita, D. Blânzeanu, M. Pogonaru, R. Dea-
conescu, and C. Raiciu, “Nephele: Extending virtualization environments
for cloning unikernel-based vms,” in EuroSys, 2023.

[44] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer,
P. Piwonka, and D. Popa, “Firecracker: Lightweight virtualization for
serverless applications,” in USENIX NSDI, 2020.

[45] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM is lighter (and safer) than

your container,” in ACM Symposium on Operating Systems Principles
(SOSP), 2017.

[46] OpenStack Foundation, “Kata Containers,” https://katacontainers.io/
collateral/kata-containers-1pager.pdf.

[47] A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by
using ksm,” in Ottawa Linux Symposium (OLS), 2009.

[48] P. Sharma and P. Kulkarni, “Singleton: system-wide page deduplica-
tion in virtual environments,” in International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), 2012.

[49] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao, “CMD:
classification-based memory deduplication through page access char-
acteristics,” in ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE), 2014.

[50] I. Banerjee, P. Moltmann, K. Tati, and R. Venkatasubramanian, “Esx
memory resource management: Transparent page sharing,” 2013.

[51] C. A. Waldspurger, “Memory resource management in vmware ESX
server,” in USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[52] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat, “Difference engine: Harnessing memory
redundancy in virtual machines,” in USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2008.

[53] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman, “Satori:
Enlightened page sharing,” in USENIX Annual Technical Conference
(ATC), 2009.

[54] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and F. Bellosa,
“XLH: more effective memory deduplication scanners through cross-
layer hints,” in USENIX Annual Technical Conference (ATC), 2013.

[55] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner, “Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers,” in ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE),
2009.

[56] Citrix Systems, Inc., “Citrix Hypervisor VM memory,” https://docs.
citrix.com/en-us/citrix-hypervisor/vms/vm-memory.html.

[57] ——, “Citrix Hypervisor Configuring VM Memory,”
https://docs.citrix.com/en-us/xencenter/current-release/vms-
memory.html#dynamic-memory-control-dmc.

[58] Jose DelaRosa, “KVM Virtualization in RHEL 7 Made Easy,” Dell
Linux Engineering White Paper, 2014.

[59] VMware, “VMware vSphere Documentation:Memory Virtualization
Basics:Virtual Machine Memory,” https://docs.vmware.com/en/
VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-
C25A8823-F595-4322-BD0D-4FD5B081F877.html.

[60] OpenJS Foundation, “Node.js,” https://nodejs.org/en/.
[61] NGINX Inc., “Nginx,” https://www.nginx.com/.
[62] Danga Interactive, “Memcached,” https://memcached.org/.
[63] Redis Labs, “Redis,” https://redis.io/.
[64] Wikipedia, “LevelDB,” https://en.wikipedia.org/wiki/LevelDB.

[65] RedisLabs, “memtier benchmark,” https://github.com/RedisLabs/
memtier_benchmark.

[66] Wikipedia, “Memory overcommitment,” https://en.wikipedia.org/wiki/
Memory_overcommitment.

[67] ——, “Memory ballooning,” https://en.wikipedia.org/wiki/Memory_
ballooning.

[68] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,” in
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE), 2009.

[69] J. Kim, V. V. Fedorov, P. V. Gratz, and A. L. N. Reddy, “Dynamic
memory pressure aware ballooning,” in International Symposium on
Memory Systems (MEMSYS), 2015.

[70] T. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone, “Application
level ballooning for efficient server consolidation,” in EuroSys, 2013.

[71] P. Hahn, “VirtIO Memory Ballooning,” https://pmhahn.github.io/virtio-
balloon/.

[72] linux kvm.org, “Automatic Ballooning,” https://www.linux-kvm.org/
page/Projects/auto-ballooning.

[73] N. Amit, D. Tsafrir, and A. Schuster, “Vswapper: a memory swapper for
virtualized environments,” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2014.

[74] V. Nitu, A. Kocharyan, H. Yaya, A. Tchana, D. Hagimont, and H. V.
Astsatryan, “Working set size estimation techniques in virtualized envi-
ronments: One size does not fit all,” POMACS, 2018.

[75] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on. IEEE, 2001.

[76] Hardkernel, “ODROID XU4,” http://www.hardkernel.com/main/
products/prdt_info.php.

[77] lubuntu.net, “Lubuntu,” http://lubuntu.net/.
[78] Wikipedia, “Copy-on-write,” https://en.wikipedia.org/wiki/Copy-on-

write.
[79] Xen.org, “Xen Project 4.10 Release Notes,” https://wiki.xenproject.org/

wiki/Xen_Project_4.10_Release_Notes.
[80] R. T. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The click

modular router,” in ACM Symposium on Operating Systems Principles
(SOSP), 1999.

[81] Xen.org, “X86 Paravirtualised Memory Management,” https://wiki.
xenproject.org/wiki/X86_Paravirtualised_Memory_Management.

[82] R. Arpaci-Dusseau and A. Arpaci-Dusseau, “Chapter 22: Beyond phys-
ical memory: Policies,” Operating Systems: Three Easy Pieces, 2018.

[83] Victor Stinner, “The Python Performance Benchmark Suite,” https:
//pyperformance.readthedocs.io/index.html.

[84] iPerf, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”
https://iperf.fr/.

