

Towards Better CPU Power Management
on Multicore Smartphones

Yifan Zhang1,2, Xudong Wang3,1, Xuanzhe Liu3,1, Yunxin Liu1, Li Zhuang1, Feng Zhao1

1Microsoft Research Asia, Beijing, China 2College of William and Mary, Williamsburg, VA, USA

3Peking University, Beijing, China

ABSTRACT
Although multicore smartphones have become increasingly main-

stream, it is unclear whether and how smartphone applications can

utilize multicore CPUs to improve performance. In this paper we

study the performance of mobile applications using multicore

CPUs, in terms of power and computation cost. Using Web brows-

ing as an example, our preliminary measurement results show that

even large applications like Web browsers with multi-threading

acceleration cannot fully utilize the multicore CPUs. Furthermore,

we find that the existing CPU power models on smartphones are

ill-suited for modern multicore CPUs. We develop a new CPU

power model with a high accuracy, 95.6% on average. Our work

helps to better understand the performance of multicore

smartphones and paves the way towards better CPU power man-

agement on multicore smartphones.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling Techniques

General Terms

Experimentation, Measurement, Performance

Keywords

Power Management, Multicore, Power Modeling, Smartphone

1. INTRODUCTION
Multicore smartphones are increasingly common. For example,

Quad-core CPU is already the standard configuration of main-

stream smartphones, such as Nexus 4, Samsung Galaxy S3, HTC

One, and many others. Samsung Galaxy S4 even has an 8-core

CPU. With more 8-core chipsets such as MediaTek MT6592 to be

released, more 8-core CPU smartphones are coming.

Despite the proliferation of multicore smartphones in the market,

the performance and end-user experience of multicore smartphones

remains unclear. The purposes of the multicore design are to re-

duce the power consumption (a low-frequency CPU core consumes

less power than a high-frequency one) and to improve the perfor-

mance (e.g., applications may use multiple CPU cores simultane-

ously to speed up). However, in practice there are many customer

complaints about the performance of multicore smartphones, par-

ticularly the high power consumption, and debate about the value

of multicore CPU on smartphones [1].

In this paper, we present a study on the performance of mobile

applications on multicore smartphones, on both power and compu-

tation cost. From such a study, we can understand how existing

applications utilize multicore CPU and improve applications to

better leverage the capability of multicores and the system to better

manage the power. Towards this end, we have studied the perfor-

mance of Web browsing on multicore smartphones, because it is

one of the most frequently used application on smartphones; the

browsers support multi-threading acceleration and thus are more

multicore friendly than other applications.

Based on our preliminary measurement results using the Chrome

browser (version 19), we find it cannot fully utilize the power of

multicore CPU, although the browser supports multi-threading

accretion and is designed with parallelization in mind [2, 3, 4].

Comparing to the single CPU core case, using more CPU cores

only provides very small performance gain, both in total energy

cost and page load time.

To scale our study to more applications, we need an automatic

approach to measuring the power consumption which is currently

done using an external power meter and thus very time consuming.

Power-modeling is a promising approach to automatic measure-

ment. However, we find the exiting CPU power-modeling meth-

ods, which estimate the power consumption of a CPU based on the

frequency and utilization of the CPU [5, 6, 7], give very high er-

rors on modern multicore smartphones. For example, two work-

loads with the same CPU utilization level but different CPU usage

patterns may consume a significantly different amount of energy,

with the difference up to 50%. To address this problem, we pro-

pose a new CPU power-modeling method for multicore

smartphones. Our method considers the impacts of CPU idle states

and is able to achieve a very high accuracy, 95.6% on average.

The main contributions of this paper are twofold:

 Using Web browsing as an example, our preliminary

study shows that even large smartphone applications like Web

browsers with multi-threading acceleration cannot fully utilize

multicore CPUs. This calls for a deep study on application per-

formance on multicore smartphones.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice

and the full citation on the first page. To copy otherwise, to republish, to post on

servers or to redistribute to lists, requires prior specific permission and/or a fee.

Copyright 2013 ACM X-XXXXX-XX-X/XX/XX...$5.00.

Figure 1: Energy/power consumption and finish time in loading the ten webpages with different numbers of CPU cores used.

0%

50%

100%

150%

Total Energy Average Power Finish Time

Without Cache

1 core 2 cores 3 cores 4 cores

0%

50%

100%

150%

Total Energy Average Power Finish Time

With Cache
1 core 2 cores 3 cores 4 cores

Figure 2: Total energy and finish time of loading the

homepage of QQ, both PC version and mobile version.

0

4

8

12

16

20

PC Mobile

To
ta

l E
n

er
gy

 (
Jo

u
le

s) 1 core

2 cores

3 cores

4 cores

0

2

4

6

8

10

12

PC Mobile

Fi
n

is
h

e
Ti

m
e

(s
)

1 core

2 cores

3 cores

4 cores

Figure 3: Average CPU usage of loading the ten webpages

when different numbers of cores are used.

0%

20%

40%

60%

80%

100%

C
P

U
 U

sa
ge

P

er
ce

n
ta

ge

1 core 2 cores 3 cores 4 cores

 We show that the existing CPU power models on

smartphones cannot be used to estimate the power consumption

of multicore CPUs. We propose a new CPU idle-state-based

power model which is able to achieve a high accuracy, as an im-

portant step stone towards a large scale study of application pow-

er performance and better CPU power management on multicore

smartphones.

2. PERFORMANCE OF WEB BROWSING

2.1 Experimental Setup
We conducted experiments to measure the performance of Web

browsing on a Nexus 4 smartphone running Android 4.2, with a

1.5GHz Quad-core Snapdragon S4 Pro processor, 2GB RAM and

8GB internal storage. The power consumption was measured by a

Monsoon Power Monitor [8], with minimal background processes

and the lowest screen backlight level. We used Ftrace, a Linux

kernel tracer [9], to log the CPU scheduling information in the

kernel to precisely calculate the CPU utilization of every process.

We developed a tool that controls the ON/OFF states of each CPU

core and thus is able to measure application performance using

arbitrary numbers of CPU cores.

We used the popular Google Chrome browser (version 19) and

have measured the total energy cost, the average power and the

finish time (i.e., the page load time) in loading a webpage. We

measured ten popular websites, including a search query with two

search engines (Google and Bing), and homepages of three Web

portals (Sina, QQ and 163), three e-commerce websites (Amazon,

eBay and Taobao), Wikipedia and YouTube. Each experiment was

repeated for 5 times and we report the average results.

2.2 Measurement Results
Figure 1 shows the energy/power cost and the finish time in load-

ing ten webpages. We compare the average performance of loading

those webpages when different numbers of the CPU cores are ena-

bled, using the performance on a single core as the baseline (i.e.,

the 1-core bars are always 100%). The figure on the left shows the

results of loading webpages without any web caching, and the

figure on the right shows the results when webpages have been

visited and thus cached.

It shows that the overall performance is improved when two cores

are enabled. For example, in the “Without Cache” case, the finish

time decreases by 10.9% and the total energy cost is reduced by

5.2%, although the average power increases by 5.7%. This demon-

strates that the Chrome browser is able to benefit from using two

cores, both in the total energy cost and in the finish time. However,

the performance improvement is relatively small, far from being

doubled. Furthermore, when more cores are enabled, the extra

performance gains are almost negligible. From 2 cores to 3 cores,

the extra savings of total energy and finish time are only 1.3% and

1.8%. The performance of the case of 4 cores is even slightly

worse than the one of the case of 2 cores. We see similar results in

the “With Cache” figure. Comparing to the “Without Cache” ex-

periments, the saving of finish time in the 2-core case is slightly

higher, 12.0%, due to the less time spent on network data fetching.

However, the reduction of total energy is the same, 5.2%, due to

the higher average power.

To measure the performance of more complex webpages, we re-

peated the experiments using the PC version of the above webpag-

es. We observed the similar results as the mobile version webpag-

es. Figure 2 shows the results of QQ, a popular Web portal in Chi-

na, both the mobile version and the PC version. We can see that

Table 1: CPU idle power states on Nexus 4.

State Name Idle Power (mW)

C0 Wait for interrupt 433

C1 Retention 390

C2 Power collapse standalone 330

C3 Power collapse 200

Without entering idle states 1,060

Figure 4: Workloads with the same CPU utilization and fre-

quency may have very different power consumptions.

384 MHz 1026 MHz 1512 MHz
0

5

10

15

20

25

30

35

40

45

50

P
o

w
er

 d
if

fe
re

n
ce

 p
er

ce
n

ta
g

e
(%

)

CPU frequency

 25% CPU utilization

 50% CPU utilization

 75% CPU utilization

0 200 400 600 800 1000
200

300

400

500

600

700

800

900
 75% CPU utilization

 50% CPU utilization

 25% CPU utilization

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 (

m
W

)

Computation duration (ms)

(1512 MHz)

(b)(a)
compared to loading the mobile version webpage, loading the PC

version webpage takes a much longer time and costs much more

energy, because there are much more data to be fetched and pro-

cessed. However, we see the same performance trend when differ-

ent numbers of CPU cores are used: using two cores can help im-

prove the performance slightly but using more cores cannot help

further. In fact, when 3 or 4 cores are used, the energy cost is even

higher than the one of using only 2 cores. These results indicate

that the Chrome browser cannot leverage multicore to boost its

performance, even for complex webpages which require more

computations.

By analyzing the traces of Ftrace, we further study the CPU usage

in loading the ten webpages, when different numbers of CPU cores

are used. In loading the webpages, the Chrome browser created 15-

21 threads, each for a task or worker such as parsing and rendering

the webpage or handling I/O and cache. Figure 3 shows the aver-

age results of the ten webpages in terms of the total CPU utiliza-

tion ratio. That is, when multiple CPU cores are used, we calculate

the average usage percentage of all the cores. We can see that the

total CPU usage percentage significantly decreases when more

cores are used. Clearly, the Chrome browser fails to fully utilize

the power of multicore CPU.

Summary of findings. From the above preliminary measurement

results, we can see that despite the Chrome browser employs mul-

tiple threads to parallelize and accelerate the loading of webpages,

it still cannot fully leverage the power of multicore CPU to reduce

the page load time or the total energy cost. We guess that this is

probably due to the tight coupling among the threads of the

Chrome browser. There are on-going research efforts on paralleliz-

ing browsers [2, 3, 4]. We plan to investigate more on this.

3. POWER MODELING OF MULTICORE

CPU
In this section we first give the background on CPU idle states.

Then we show that the existing CPU power models do not work

well on multicore smartphones and propose a new power model for

accurate CPU power modeling.

3.1 Background: CPU Idle States
An online CPU works in either the operating state in which all the

CPU components are powered up and there are tasks to process, or

an idle state when there is no workload in the CPU and thus some

parts of the CPU is put into low-power mode. The operating state

and the idle states are also called “C-states” in the ACPI specifica-

tion [12].

As shown in Table 1, on Nexus 4, there are four CPU idle power

states, C0-C3, which are achieved by disabling different CPU

components. For instance, in the state C0 only the CPU clocks are

disabled but in the state C3 all the CPU caches are also flushed and

disabled. By enabling each of the idle states separately, we have

measured the idle system power of a Nexus 4 smartphone when the

phone enters each idle state. As a comparison, we also measured

the case when all the CPU idle states are disabled. We can see that

the idle states have much lower power than the operating state and

the powers of different idle states are also very different, which

affect the accuracy of the existing power models, as we will show

next.

3.2 Limitation of Existing CPU Power Models
Most of the existing work on building CPU power models on

smartphones consider only CPU utilization ratio and operating

frequency as the predicators in the modeling [5, 6, 7]. However,

we found that CPU power consumption in Nexus 4 exhibited a

large variation even when both CPU frequency and utilization ratio

were fixed. In our experiment, we wrote a workload generator

program that periodically performed continuous computation fol-

lowed by an idle period. By controlling the ratio of idle period with

respect to the continuous computation duration, the program could

generate workloads with different CPU utilization ratios. We found

that by adjusting time duration of the continuous computation,

power consumption of a single CPU core could exhibit a large

range of variation even when the CPU frequency and utilization

ratio were fixed.

For example, Figure 4(a) show the power consumption of a single

CPU core when the operating frequency was fixed at 1512 MHz.

We can see that, with a fixed CPU utilization ratio, the power con-

sumption of the CPU core dropped while the duration of the con-

tinuous computation increased. Figure 4(b) summarizes the differ-

ence of power consumption with two more CPU frequencies (384

MHz and 1026 MHz). Each value in the figure is calculated as the

percentage of the difference between the max and min powers over

the max value for each frequency/utilization configuration. We can

see that when frequency/utilization ratio were fixed at 1512

MHz/25%, the power difference could reach as high as 50%.

The reason is because modern multicore CPUs like the one of

Nexus 4 smartphones have multiple idle states which have very

different power consumptions. When utilization ratio was fixed,

prolonging the duration of the continuous computation caused the

corresponding idle period to increase accordingly. Longer idle

period allowed the OS to put the CPU core into deeper idle states

more frequently, which in turn lowered the CPU power consump-

tion.

Koala [10] proposes a CPU power model that takes CPU idle states

into account. However, it only considers the portion of each CPU

idle state duration over the whole idle period. As we will showed

later, even when portion of each idle state duration is fixed, CPU

could have more than 20% variation of power consumption. Sesa-

me [11] also considers CPU idle states when modeling CPU power

consumption. But it does not provide description about how this

Figure 5: Single-core power model development. Figures (a)-(d) show 𝑻𝑪𝒊
, 𝑬𝑪𝒊

, 𝑬𝑫𝑪𝒊
, and 𝑾𝑬𝑫𝑪𝒊

 for the four CPU idle states

𝑪𝟎 - 𝑪𝟑, respectively (with CPU frequency f = 1512 MHz, utilization ratio U = 75%).

(d)(c)(b)(a)

0

20

40

60

80
300
600

T
o

ta
l

en
tr

ie
s

p
er

 s
ec

o
n

d

 C0

 C1

 C2

 C3

10
0020

0
40

0
80

0

Computation duration (ms)
60

08010
06040201086421

150

100

5

50

4

3

2

1

A
v
er

ag
e

d
u

ra
ti

o
n

 p
er

 e
n

tr
y

 (
m

s) C0

 C1

 C2

 C3

10
0020

0
40

0
80

0

Computation duration (ms)
60

08010
06040201086421

0

90

30

120

60

3.5
3.0
2.5
2.0
1.5
1.0
0.5W

ei
g

h
te

d
 a

v
er

ag
e

d
u

ra
ti

o
n

p
er

 e
n

tr
y

 (
m

s) C0

 C1

 C2

 C3

10
0020

0
40

0
80

0

Computation duration (ms)
60

08010
06040201086421

00

250

200

150

100

50

10
0020

0
40

0
80

0

T
o

ta
l

d
u

ra
ti

o
n

 p
er

 s
ec

o
n

d
 (

m
s)

Computation duration (ms)

 C0

 C1

 C2

 C3

60
08010

06040201086421

Table 2: CPU power (mW) with different numbers of cores

running (with utilization ratio U = 50%).

𝑵𝑪
f = 384 MHz f = 1512 MHz

𝑷𝑩𝑳,𝑵𝑪
 𝑷𝑪𝑷𝑼 𝑷∆,𝒄𝒐𝒓𝒆 𝑷𝑩𝑳,𝑵𝑪

 𝑷𝑪𝑷𝑼 𝑷∆,𝒄𝒐𝒓𝒆

1 62 144 82 62 495 433

2 73 213 70 73 902 415

3 73 282 70 73 1,312 413

4 73 348 69 73 1,732 415

particular information is used in the modeling process. Moreover,

Sesame considers idle states only in its laptop power models, but

not in the power models for smartphones.

3.3 Idle-State-Based CPU Power Model
We propose a new CPU power model for smartphones which not

only considers CPU frequency and utilization ratio, but also takes

into account the impacts of CPU idle states. In the following, we

first present the development of our power modeling for the single

core case. Then, we show how the single-core power modeling can

be adjusted to the multi-core case.

3.3.1 Power Modeling for a Single CPU Core
Similar to the existing work, we use regression-based method to

integrate the predictors (i.e, CPU frequency, utilization ratio and

idle states) into the proposed power model. To determine what

statistics about CPU idle states can be used as the predictor varia-

ble of the regression model, we first considered 𝑇𝐶𝑖
, which is total

time duration that a CPU core stays in the idle state 𝐶𝑖 per second

when frequency f and utilization ratio U are fixed. Suppose the

total CPU idle time per second is 𝑇𝑖𝑑𝑙𝑒, we have

𝑇𝑖𝑑𝑙𝑒 = ∑ 𝑇𝐶𝑖𝑖 (1)

Figure 5(a) shows 𝑇𝐶𝑖
 for idle states 𝐶0 to 𝐶3 when we ran our

workload generator program on a single CPU core (with f=1512

MHz, U=75%). Note that since the stock Nexus 4 kernel does not

enable the idle state 𝐶1, statistics for 𝐶1 remain zero in Figure 5.

We can see that the CPU core spent more time staying in deeper

idle states as duration of the continuous computation increased,

because the idle period also increased accordingly. However, 𝑇𝐶𝑖
 is

not a good predictor of CPU power consumption. For example,

after the computation duration increased to 20 millisecond, 𝑇𝐶𝑖

(i=0,1,2,3) stayed stable. But the CPU power kept decreasing as

shown in Figure 4(a). In fact, in our experiment, the power differ-

ence could reach 24% for the same 𝑇𝐶𝑖
 (i=0,1,2,3) (when f=1512

MHz, U=25%).

Figure 5(b) shows 𝐸𝐶𝑖
, which is the number of entries for idle state

𝐶𝑖 per second, in the same experiment. For the same 𝑇𝐶𝑖
, smaller

𝐸𝐶𝑖
 means less operating/idle transition energy overhead, and thus

more energy savings, which explains our previous observation that

CPU power kept decreasing when 𝑇𝐶𝑖
 is unchanged.

We then looked at the average entry duration for idle state 𝐶𝑖 ,

which is notated as 𝐸𝐷𝐶𝑖
:

𝐸𝐷𝐶𝑖
=

𝑇𝐶𝑖

𝐸𝐶𝑖

 (2)

Generally, 𝐸𝐷𝐶𝑖
 is a good predictor of CPU power, because it in-

volves both idle state duration and state transition overhead. How-

ever, 𝐸𝐷𝐶𝑖
 could suffer from noise, which comes from those spo-

radic entries of idle state 𝐶𝑗 when the CPU enters state 𝐶𝑖 most of

the time. For example, Figure 5(c) shows 𝐸𝐷𝐶𝑖
 in the experiment.

We can see that 𝐸𝐷𝐶3
 was greater than 𝐸𝐷𝐶0

 when 𝐶0 is the domi-

nant idle state.

To eliminate the noise in 𝐸𝐷𝐶𝑖
, we applied a weight 𝑤𝑖 to 𝐸𝐷𝐶𝑖

 to

form weighted average entry duration 𝑊𝐸𝐷𝐶𝑖
:

𝑊𝐸𝐷𝐶𝑖
= 𝑤𝑖 × 𝐸𝐷𝐶𝑖

, 𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 =
𝑇𝐶𝑖

𝑇𝑖𝑑𝑙𝑒
 (3)

Figure 5(d) shows 𝑊𝐸𝐷𝐶𝑖
 in the experiment.

Finally, we model power consumption of a single CPU core work-

ing at frequency f as

𝑃𝑐𝑜𝑟𝑒 = ∑ 𝛽𝐶𝑖
∙ 𝑊𝐸𝐷𝐶𝑖

+ 𝛽𝑈 ∙ 𝑈 + 𝑐𝑖 (4)

where 𝛽𝐶𝑖
 and 𝛽𝑈 are the coefficients of 𝑊𝐸𝐷𝐶𝑖

 and the utilization

ratio U, and c is a constant. For each CPU frequency f supported

by Nexus 4, we obtained the coefficients and the constant by run-

ning linear regression analysis on the training data containing dif-

ferent 𝑇𝐶𝑖
 and U, and the corresponding 𝑃𝑐𝑜𝑟𝑒 . Both 𝑇𝐶𝑖

 and U

were calculated from the information obtained from the /proc

filesystem.

3.3.2 Power Modeling for Multi-core CPU
We further conducted an experiment to study how the single-core

CPU power model can be extended to multi-core scenario. In the

experiment, we enabled different number of CPU cores, which

were running at the same frequencies, and then generated the same

amount of workload on each enabled core. We measured the CPU

power while varying the core frequencies and utilization ratios.

Table 2 presents the results for the cases when core frequencies

were fixed at 384 MHz and 1512 MHz, and the core utilization

ratio was 50%. In the table, the power increment per core was cal-

culated as 𝑃∆,𝑐𝑜𝑟𝑒 =
𝑃𝐶𝑃𝑈−𝑃𝐵𝐿,𝑁𝑐

𝑁𝐶
, where 𝑁𝐶 is the number of cores

enabled, 𝑃𝐵𝐿,𝑁𝐶
 is the baseline CPU power when 𝑁𝐶 cores were

enabled, and 𝑃𝐶𝑃𝑈 is the measured whole CPU power. We can see

that 𝑃∆,𝑐𝑜𝑟𝑒 was consistent for the same “frequency/utilization ra-

tio” when there were more than one core enabled, but was notably

smaller than the value when there was only one core running the

workload. The reason is that in Nexus 4, when there are more than

one core running, the deepest CPU idle state each running core can

enter is state 𝐶2. The state 𝐶3, where the shared L2 cache is disa-

ble, can only be entered by core-0 when there is no other core is

online. Therefore, 𝑃∆,𝑐𝑜𝑟𝑒 for the single-core case is always greater

than that for the multi-core case.

Based on our observation, we decided to model a multi-core CPU

power consumption 𝑃𝐶𝑃𝑈 as

𝑃𝐶𝑃𝑈 = 𝑃𝐵𝐿,𝑁𝐶
+ ∑ 𝑃∆,𝑐𝑜𝑟𝑒,𝑈𝑖,𝑓𝑖

𝑁𝐶

𝑖 (5)

where 𝑁𝐶 is the number of cores enabled, 𝑃𝐵𝐿,𝑁𝐶
 is the baseline

CPU power with 𝑁𝐶 enabled cores, and 𝑃∆,𝑐𝑜𝑟𝑒,𝑈𝑖,𝑓𝑖
 is power in-

crement of core-i when it is working at frequency 𝑓𝑖 with utiliza-

tion ratio 𝑈𝑖 . For each frequency 𝑓𝑖 , 𝑃∆,𝑐𝑜𝑟𝑒,𝑈𝑖,𝑓𝑖
 can be predicted

using the single-core power model developed previously, while

𝑃𝐵𝐿,𝑁𝐶
 is a constant value that can be measured beforehand. Note

that for Nexus 4, we need to model 𝑃∆,𝑐𝑜𝑟𝑒,𝑈𝑖,𝑓𝑖
 separately for the

case when there is only one core is online and when there are mul-

tiple cores are online, because these two cases have different sets

of CPU idle states.

3.3.3 Experimental Evaluation
We have conducted experiments on Nexus 4 to evaluate our idle-

state-based multi-core CPU power model. In the experiments, we

developed three benchmark programs that perform busy loop, busy

floating point operations and busy cache accesses, respectively.

Similar to our workload generator program previously, the busy

operations are performed periodically followed by a configurable

idle period, and the duration of the busy operations can also be

adjusted.

For different number of enabled cores, we performed the experi-

ment for 20 rounds. In each round, we ran each benchmark pro-

gram on every enabled core, with randomly generated durations for

the busy operations and the following idle period. We used our

CPU power models to predict the CPU power consumption, and

calculated the prediction accuracy by comparing the predicted

values to the ground truth values measured by the power meter.

The average prediction accuracy for the benchmark programs is

95.6%, ranging from 95.0% to 96.2%, which demonstrates that our

models significantly outperform the existing power models.

4. CONCLUSION AND ON-GOING WORK
In the paper we introduced our efforts toward providing better

power management on multicore smartphones. We demonstrated

that current smartphone applications are not fully utilizing multi-

core capability by studying the Web browsing performance with

the Chrome browser. We also showed the existing solutions of

modeling power consumption of CPUs do not work well in Nexus

4, a quad-core CPU smartphone. Then, we proposed our idle-state-

based CPU power model, which is shown to be able to achieve

95.6% prediction accuracy on different types of workloads.

To further understand and optimize multi-core CPU performance

on smartphones, we are currently working or plan to work on the

following three research directions. 1) Further improvement on

CPU power modeling. For example, to support heterogeneous

multicore architectures, such as ARM big.LITTLE architecture

used in Samsung Galaxy S4. 2) Comprehensive app study on mul-

ticore performances. By using the proposed CPU power model and

kernel scheduling tools, we are conducting a comprehensive study

on how applications are utilizing smartphones’ multi-processing

capability as well as the corresponding power efficiency. We ex-

pect the study results can help us to identify, analyze and improve

the bottlenecks in applications or OSes of fully exploiting compu-

tation power of multicore smartphones. 3) OS/API support for

multicore CPU performance improvement in smartphones. We

plan to investigate how to improve applications’ ability in exploit-

ing multicore CPUs. E.g., to improve OS’s efficiency regarding

scheduling smartphone workloads, and to provide developer-

friendly APIs which require little or no effort from developers to

exploit smartphones’ multi-processing capability.

REFERENCES
[1] Multicore Madness in Smartphones,

http://eecatalog.com/multicore/2013/04/10/multicore-

madness/.

[2] C. J. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bod-

ik, "Parallelizing the Web Browser", in USENIX HotPar

2009.

[3] C. Badea, M. R. Haghighat, A. Nicolau, and A. V.

Veidenbaum, "Towards Parallelizing the Layout Engine of

Firefore", in USENIX HotPar 2010.

[4] H. Mai, S. Tang, S. T. King, C. Cascaval, and P. Montesinos,

"A Case for Parallelizing Web Pages", in USENIX HotPar

2012.

[5] F. Xu, Y. Liu, Q. Li, and Y. Zhang, "V-edge: Fast Self-

constructive Power Modeling of Smartphones Based on Bat-

tery Voltage Dynamics", in USENIX NSDI 2013.

[6] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao, and

L. Yang, "Accurate Online Power Estimation and Automatic

Battery Behavior Based Power Model Generation for

Smartphones", in CODES+ISSS, 2010.

[7] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, "Appscope:

Application Energy Metering Framework for Android

Smartphone Using Kernel Activity Monitoring", in USENIX

ATC, 2012.

[8] Ftrace, http://elinux.org/Ftrace.

[9] Monsoon Power Monitor,

http://www.msoon.com/LabEquipment/PowerMonitor/.

[10] D. C. Snowdon, E. L. Sueur, S. M. Petters, and G. Heiser,

"Koala: A Platform for OS-level Power Management", in Eu-

roSys, 2009.

[11] M. Dong, and L. Zhong, "Self-constructive High-rate System

Energy Modeling for Battery-powered Mobile Systems", in

MobiSys, 2011.

[12] Hewlett-Packard, Intel, Microsoft, Phoenix Technologies, and

Toshiba, “Advanced Configuration and Power Interface Spec-

ification”, revision 5.0, 2011.

