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ABSTRACT  
Although multicore smartphones have become increasingly main-

stream, it is unclear whether and how smartphone applications can 

utilize multicore CPUs to improve performance. In this paper we 

study the performance of mobile applications using multicore 

CPUs, in terms of power and computation cost. Using Web brows-

ing as an example, our preliminary measurement results show that 

even large applications like Web browsers with multi-threading 

acceleration cannot fully utilize the multicore CPUs. Furthermore, 

we find that the existing CPU power models on smartphones are 

ill-suited for modern multicore CPUs. We develop a new CPU 

power model with a high accuracy, 95.6% on average. Our work 

helps to better understand the performance of multicore 

smartphones and paves the way towards better CPU power man-

agement on multicore smartphones.  
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General Terms 

Experimentation, Measurement, Performance 
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1. INTRODUCTION 
Multicore smartphones are increasingly common. For example, 

Quad-core CPU is already the standard configuration of main-

stream smartphones, such as Nexus 4, Samsung Galaxy S3, HTC 

One, and many others. Samsung Galaxy S4 even has an 8-core 

CPU. With more 8-core chipsets such as MediaTek MT6592 to be 

released, more 8-core CPU smartphones are coming. 

Despite the proliferation of multicore smartphones in the market, 

the performance and end-user experience of multicore smartphones 

remains unclear. The purposes of the multicore design are to re-

duce the power consumption (a low-frequency CPU core consumes 

less power than a high-frequency one) and to improve the perfor-

mance (e.g., applications may use multiple CPU cores simultane-

ously to speed up). However, in practice there are many customer 

complaints about the performance of multicore smartphones, par-

ticularly the high power consumption, and debate about the value 

of multicore CPU on smartphones [1].  

In this paper, we present a study on the performance of mobile 

applications on multicore smartphones, on both power and compu-

tation cost. From such a study, we can understand how existing 

applications utilize multicore CPU and improve applications to 

better leverage the capability of multicores and the system to better 

manage the power. Towards this end, we have studied the perfor-

mance of Web browsing on multicore smartphones, because it is 

one of the most frequently used application on smartphones; the 

browsers support multi-threading acceleration and thus are more 

multicore friendly than other applications. 

Based on our preliminary measurement results using the Chrome 

browser (version 19), we find it cannot fully utilize the power of 

multicore CPU, although the browser supports multi-threading 

accretion and is designed with parallelization in mind [2, 3, 4]. 

Comparing to the single CPU core case, using more CPU cores 

only provides very small performance gain, both in total energy 

cost and page load time. 

To scale our study to more applications, we need an automatic 

approach to measuring the power consumption which is currently 

done using an external power meter and thus very time consuming. 

Power-modeling is a promising approach to automatic measure-

ment. However, we find the exiting CPU power-modeling meth-

ods, which estimate the power consumption of a CPU based on the 

frequency and utilization of the CPU [5, 6, 7], give very high er-

rors on modern multicore smartphones. For example, two work-

loads with the same CPU utilization level but different CPU usage 

patterns may consume a significantly different amount of energy, 

with the difference up to 50%. To address this problem, we pro-

pose a new CPU power-modeling method for multicore 

smartphones. Our method considers the impacts of CPU idle states 

and is able to achieve a very high accuracy, 95.6% on average. 

The main contributions of this paper are twofold: 

 Using Web browsing as an example, our preliminary 

study shows that even large smartphone applications like Web 

browsers with multi-threading acceleration cannot fully utilize 

multicore CPUs. This calls for a deep study on application per-

formance on multicore smartphones. 
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Figure 1: Energy/power consumption and finish time in loading the ten webpages with different numbers of CPU cores used. 
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Figure 2: Total energy and finish time of loading the 

homepage of QQ, both PC version and mobile version. 
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Figure 3: Average CPU usage of loading the ten webpages 

when different numbers of cores are used. 
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 We show that the existing CPU power models on 

smartphones cannot be used to estimate the power consumption 

of multicore CPUs. We propose a new CPU idle-state-based 

power model which is able to achieve a high accuracy, as an im-

portant step stone towards a large scale study of application pow-

er performance and better CPU power management on multicore 

smartphones. 

2. PERFORMANCE OF WEB BROWSING 

2.1 Experimental Setup 
We conducted experiments to measure the performance of Web 

browsing on a Nexus 4 smartphone running Android 4.2, with a 

1.5GHz Quad-core Snapdragon S4 Pro processor, 2GB RAM and 

8GB internal storage. The power consumption was measured by a 

Monsoon Power Monitor [8], with minimal background processes 

and the lowest screen backlight level. We used Ftrace, a Linux 

kernel tracer [9], to log the CPU scheduling information in the 

kernel to precisely calculate the CPU utilization of every process. 

We developed a tool that controls the ON/OFF states of each CPU 

core and thus is able to measure application performance using 

arbitrary numbers of CPU cores.  

We used the popular Google Chrome browser (version 19) and 

have measured the total energy cost, the average power and the 

finish time (i.e., the page load time) in loading a webpage. We 

measured ten popular websites, including a search query with two 

search engines (Google and Bing), and homepages of three Web 

portals (Sina, QQ and 163), three e-commerce websites (Amazon, 

eBay and Taobao), Wikipedia and YouTube. Each experiment was 

repeated for 5 times and we report the average results. 

2.2 Measurement Results 
Figure 1 shows the energy/power cost and the finish time in load-

ing ten webpages. We compare the average performance of loading 

those webpages when different numbers of the CPU cores are ena-

bled, using the performance on a single core as the baseline (i.e., 

the 1-core bars are always 100%). The figure on the left shows the 

results of loading webpages without any web caching, and the 

figure on the right shows the results when webpages have been 

visited and thus cached.  

It shows that the overall performance is improved when two cores 

are enabled. For example, in the “Without Cache” case, the finish 

time decreases by 10.9% and the total energy cost is reduced by 

5.2%, although the average power increases by 5.7%. This demon-

strates that the Chrome browser is able to benefit from using two 

cores, both in the total energy cost and in the finish time. However, 

the performance improvement is relatively small, far from being 

doubled. Furthermore, when more cores are enabled, the extra 

performance gains are almost negligible. From 2 cores to 3 cores, 

the extra savings of total energy and finish time are only 1.3% and 

1.8%. The performance of the case of 4 cores is even slightly 

worse than the one of the case of 2 cores. We see similar results in 

the “With Cache” figure. Comparing to the “Without Cache” ex-

periments, the saving of finish time in the 2-core case is slightly 

higher, 12.0%, due to the less time spent on network data fetching. 

However, the reduction of total energy is the same, 5.2%, due to 

the higher average power. 

To measure the performance of more complex webpages, we re-

peated the experiments using the PC version of the above webpag-

es. We observed the similar results as the mobile version webpag-

es. Figure 2 shows the results of QQ, a popular Web portal in Chi-

na, both the mobile version and the PC version. We can see that 



 

 

Table 1: CPU idle power states on Nexus 4. 

State Name Idle Power (mW) 

C0 Wait for interrupt 433 

C1 Retention 390 

C2 Power collapse standalone 330 

C3 Power collapse 200 

Without entering idle states 1,060 

 

 

Figure 4: Workloads with the same CPU utilization and fre-

quency may have very different power consumptions. 
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compared to loading the mobile version webpage, loading the PC 

version webpage takes a much longer time and costs much more 

energy, because there are much more data to be fetched and pro-

cessed. However, we see the same performance trend when differ-

ent numbers of CPU cores are used: using two cores can help im-

prove the performance slightly but using more cores cannot help 

further. In fact, when 3 or 4 cores are used, the energy cost is even 

higher than the one of using only 2 cores. These results indicate 

that the Chrome browser cannot leverage multicore to boost its 

performance, even for complex webpages which require more 

computations.  

By analyzing the traces of Ftrace, we further study the CPU usage 

in loading the ten webpages, when different numbers of CPU cores 

are used. In loading the webpages, the Chrome browser created 15-

21 threads, each for a task or worker such as parsing and rendering 

the webpage or handling I/O and cache. Figure 3 shows the aver-

age results of the ten webpages in terms of the total CPU utiliza-

tion ratio. That is, when multiple CPU cores are used, we calculate 

the average usage percentage of all the cores. We can see that the 

total CPU usage percentage significantly decreases when more 

cores are used. Clearly, the Chrome browser fails to fully utilize 

the power of multicore CPU. 

Summary of findings. From the above preliminary measurement 

results, we can see that despite the Chrome browser employs mul-

tiple threads to parallelize and accelerate the loading of webpages, 

it still cannot fully leverage the power of multicore CPU to reduce 

the page load time or the total energy cost. We guess that this is 

probably due to the tight coupling among the threads of the 

Chrome browser. There are on-going research efforts on paralleliz-

ing browsers [2, 3, 4]. We plan to investigate more on this.  

3. POWER MODELING OF MULTICORE 

CPU 
In this section we first give the background on CPU idle states. 

Then we show that the existing CPU power models do not work 

well on multicore smartphones and propose a new power model for 

accurate CPU power modeling.  

3.1 Background: CPU Idle States 
An online CPU works in either the operating state in which all the 

CPU components are powered up and there are tasks to process, or 

an idle state when there is no workload in the CPU and thus some 

parts of the CPU is put into low-power mode. The operating state 

and the idle states are also called “C-states” in the ACPI specifica-

tion [12]. 

As shown in Table 1, on Nexus 4, there are four CPU idle power 

states, C0-C3, which are achieved by disabling different CPU 

components. For instance, in the state C0 only the CPU clocks are 

disabled but in the state C3 all the CPU caches are also flushed and 

disabled. By enabling each of the idle states separately, we have 

measured the idle system power of a Nexus 4 smartphone when the 

phone enters each idle state. As a comparison, we also measured 

the case when all the CPU idle states are disabled. We can see that 

the idle states have much lower power than the operating state and 

the powers of different idle states are also very different, which 

affect the accuracy of the existing power models, as we will show 

next.  

3.2 Limitation of Existing CPU Power Models 
Most of the existing work on building CPU power models on 

smartphones consider only CPU utilization ratio and operating 

frequency as the predicators in the modeling [5, 6, 7]. However, 

we found that CPU power consumption in Nexus 4 exhibited a 

large variation even when both CPU frequency and utilization ratio 

were fixed. In our experiment, we wrote a workload generator 

program that periodically performed continuous computation fol-

lowed by an idle period. By controlling the ratio of idle period with 

respect to the continuous computation duration, the program could 

generate workloads with different CPU utilization ratios. We found 

that by adjusting time duration of the continuous computation, 

power consumption of a single CPU core could exhibit a large 

range of variation even when the CPU frequency and utilization 

ratio were fixed.  

For example, Figure 4(a) show the power consumption of a single 

CPU core when the operating frequency was fixed at 1512 MHz. 

We can see that, with a fixed CPU utilization ratio, the power con-

sumption of the CPU core dropped while the duration of the con-

tinuous computation increased. Figure 4(b) summarizes the differ-

ence of power consumption with two more CPU frequencies (384 

MHz and 1026 MHz). Each value in the figure is calculated as the 

percentage of the difference between the max and min powers over 

the max value for each frequency/utilization configuration. We can 

see that when frequency/utilization ratio were fixed at 1512 

MHz/25%, the power difference could reach as high as 50%.  

The reason is because modern multicore CPUs like the one of 

Nexus 4 smartphones have multiple idle states which have very 

different power consumptions. When utilization ratio was fixed, 

prolonging the duration of the continuous computation caused the 

corresponding idle period to increase accordingly. Longer idle 

period allowed the OS to put the CPU core into deeper idle states 

more frequently, which in turn lowered the CPU power consump-

tion.  

Koala [10] proposes a CPU power model that takes CPU idle states 

into account. However, it only considers the portion of each CPU 

idle state duration over the whole idle period. As we will showed 

later, even when portion of each idle state duration is fixed, CPU 

could have more than 20% variation of power consumption. Sesa-

me [11] also considers CPU idle states when modeling CPU power 

consumption. But it does not provide description about how this 



 

 

 

Figure 5: Single-core power model development. Figures (a)-(d) show 𝑻𝑪𝒊
, 𝑬𝑪𝒊

, 𝑬𝑫𝑪𝒊
, and 𝑾𝑬𝑫𝑪𝒊

 for the four CPU idle states 

𝑪𝟎 - 𝑪𝟑, respectively (with CPU frequency f = 1512 MHz, utilization ratio  U = 75%). 
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Table 2: CPU power (mW) with different numbers of cores 

running (with utilization ratio U = 50%). 

𝑵𝑪 
f = 384 MHz f = 1512 MHz 

𝑷𝑩𝑳,𝑵𝑪
 𝑷𝑪𝑷𝑼 𝑷∆,𝒄𝒐𝒓𝒆 𝑷𝑩𝑳,𝑵𝑪

 𝑷𝑪𝑷𝑼 𝑷∆,𝒄𝒐𝒓𝒆 

1 62 144 82 62 495 433 

2 73 213 70 73 902 415 

3 73 282 70 73 1,312 413 

4 73 348 69 73 1,732 415 

 

particular information is used in the modeling process. Moreover, 

Sesame considers idle states only in its laptop power models, but 

not in the power models for smartphones. 

3.3 Idle-State-Based CPU Power Model 
We propose a new CPU power model for smartphones which not 

only considers CPU frequency and utilization ratio, but also takes 

into account the impacts of CPU idle states. In the following, we 

first present the development of our power modeling for the single 

core case. Then, we show how the single-core power modeling can 

be adjusted to the multi-core case. 

3.3.1 Power Modeling for a Single CPU Core  
Similar to the existing work, we use regression-based method to 

integrate the predictors (i.e, CPU frequency, utilization ratio and 

idle states) into the proposed power model. To determine what 

statistics about CPU idle states can be used as the predictor varia-

ble of the regression model, we first considered 𝑇𝐶𝑖
, which is total 

time duration that a CPU core stays in the idle state 𝐶𝑖 per second 

when frequency f and utilization ratio U are fixed. Suppose the 

total CPU idle time per second is 𝑇𝑖𝑑𝑙𝑒, we have 

𝑇𝑖𝑑𝑙𝑒 =  ∑ 𝑇𝐶𝑖𝑖                                       (1) 

Figure 5(a) shows 𝑇𝐶𝑖
 for idle states 𝐶0  to 𝐶3 when we ran our 

workload generator program on a single CPU core (with f=1512 

MHz, U=75%). Note that since the stock Nexus 4 kernel does not 

enable the idle state 𝐶1, statistics for 𝐶1 remain zero in Figure 5. 

We can see that the CPU core spent more time staying in deeper 

idle states as duration of the continuous computation increased, 

because the idle period also increased accordingly. However, 𝑇𝐶𝑖
 is 

not a good predictor of CPU power consumption. For example, 

after the computation duration increased to 20 millisecond, 𝑇𝐶𝑖
 

(i=0,1,2,3) stayed stable. But the CPU power kept decreasing as 

shown in Figure 4(a). In fact, in our experiment, the power differ-

ence could reach 24% for the same 𝑇𝐶𝑖
 (i=0,1,2,3) (when f=1512  

MHz, U=25%).  

Figure 5(b) shows 𝐸𝐶𝑖
, which is the number of entries for idle state 

𝐶𝑖 per second, in the same experiment. For the same 𝑇𝐶𝑖
, smaller 

𝐸𝐶𝑖
 means less operating/idle transition energy overhead, and thus 

more energy savings, which explains our previous observation that 

CPU power kept decreasing when 𝑇𝐶𝑖
 is unchanged. 

We then looked at the average entry duration for idle state 𝐶𝑖 , 

which is notated as 𝐸𝐷𝐶𝑖
: 

𝐸𝐷𝐶𝑖
=  

𝑇𝐶𝑖

𝐸𝐶𝑖

                                        (2) 

Generally, 𝐸𝐷𝐶𝑖
 is a good predictor of CPU power, because it in-

volves both idle state duration and state transition overhead. How-

ever, 𝐸𝐷𝐶𝑖
 could suffer from noise, which comes from those spo-

radic entries of idle state 𝐶𝑗 when the CPU enters state 𝐶𝑖 most of 

the time. For example, Figure 5(c) shows 𝐸𝐷𝐶𝑖
 in the experiment. 

We can see that 𝐸𝐷𝐶3
 was greater than 𝐸𝐷𝐶0

 when 𝐶0 is the domi-

nant idle state. 

To eliminate the noise in 𝐸𝐷𝐶𝑖
, we applied a weight 𝑤𝑖 to 𝐸𝐷𝐶𝑖

 to 

form weighted average entry duration 𝑊𝐸𝐷𝐶𝑖
: 

𝑊𝐸𝐷𝐶𝑖
= 𝑤𝑖 × 𝐸𝐷𝐶𝑖

, 𝑤ℎ𝑒𝑟𝑒 𝑤𝑖 =
𝑇𝐶𝑖

𝑇𝑖𝑑𝑙𝑒
             (3) 

Figure 5(d) shows 𝑊𝐸𝐷𝐶𝑖
 in the experiment. 

Finally, we model power consumption of a single CPU core work-

ing at frequency f as 

𝑃𝑐𝑜𝑟𝑒 = ∑ 𝛽𝐶𝑖
∙ 𝑊𝐸𝐷𝐶𝑖

+ 𝛽𝑈 ∙ 𝑈 + 𝑐𝑖                 (4) 

where 𝛽𝐶𝑖
 and 𝛽𝑈 are the coefficients of 𝑊𝐸𝐷𝐶𝑖

 and the utilization 

ratio U, and c is a constant. For each CPU frequency f supported 

by Nexus 4, we obtained the coefficients and the constant by run-

ning linear regression analysis on the training data containing dif-

ferent 𝑇𝐶𝑖
  and U, and the corresponding 𝑃𝑐𝑜𝑟𝑒 . Both 𝑇𝐶𝑖

 and U 

were calculated from the information obtained from the /proc 

filesystem. 

3.3.2 Power Modeling for Multi-core CPU 
We further conducted an experiment to study how the single-core 

CPU power model can be extended to multi-core scenario. In the 

experiment, we enabled different number of CPU cores, which 

were running at the same frequencies, and then generated the same 

amount of workload on each enabled core. We measured the CPU 



 

 

power while varying the core frequencies and utilization ratios. 

Table 2 presents the results for the cases when core frequencies 

were fixed at 384 MHz and 1512 MHz, and the core utilization 

ratio was 50%. In the table, the power increment per core was cal-

culated as 𝑃∆,𝑐𝑜𝑟𝑒 =
𝑃𝐶𝑃𝑈−𝑃𝐵𝐿,𝑁𝑐

𝑁𝐶
, where 𝑁𝐶  is the number of cores 

enabled, 𝑃𝐵𝐿,𝑁𝐶
 is the baseline CPU power when 𝑁𝐶  cores were 

enabled, and 𝑃𝐶𝑃𝑈 is the measured whole CPU power. We can see 

that 𝑃∆,𝑐𝑜𝑟𝑒 was consistent for the same “frequency/utilization ra-

tio” when there were more than one core enabled, but was notably 

smaller than the value when there was only one core running the 

workload. The reason is that in Nexus 4, when there are more than 

one core running, the deepest CPU idle state each running core can 

enter is state 𝐶2. The state 𝐶3, where the shared L2 cache is disa-

ble, can only be entered by core-0 when there is no other core is 

online. Therefore, 𝑃∆,𝑐𝑜𝑟𝑒 for the single-core case is always greater 

than that for the multi-core case.  

Based on our observation, we decided to model a multi-core CPU 

power consumption 𝑃𝐶𝑃𝑈 as 

𝑃𝐶𝑃𝑈 = 𝑃𝐵𝐿,𝑁𝐶
+ ∑ 𝑃∆,𝑐𝑜𝑟𝑒,𝑈𝑖,𝑓𝑖

𝑁𝐶

𝑖                       (5) 

where 𝑁𝐶  is the number of cores enabled, 𝑃𝐵𝐿,𝑁𝐶
 is the baseline 

CPU power with 𝑁𝐶  enabled cores, and 𝑃∆,𝑐𝑜𝑟𝑒,𝑈𝑖,𝑓𝑖
 is power in-

crement of core-i when it is working at frequency 𝑓𝑖 with utiliza-

tion ratio 𝑈𝑖 . For each frequency 𝑓𝑖 , 𝑃∆,𝑐𝑜𝑟𝑒,𝑈𝑖,𝑓𝑖
 can be predicted 

using the single-core power model developed previously, while 

𝑃𝐵𝐿,𝑁𝐶
 is a constant value that can be measured beforehand. Note 

that for Nexus 4, we need to model 𝑃∆,𝑐𝑜𝑟𝑒,𝑈𝑖,𝑓𝑖
 separately for the 

case when there is only one core is online and when there are mul-

tiple cores are online, because these two cases have different sets 

of CPU idle states. 

3.3.3 Experimental Evaluation 
We have conducted experiments on Nexus 4 to evaluate our idle-

state-based multi-core CPU power model. In the experiments, we 

developed three benchmark programs that perform busy loop, busy 

floating point operations and busy cache accesses, respectively. 

Similar to our workload generator program previously, the busy 

operations are performed periodically followed by a configurable 

idle period, and the duration of the busy operations can also be 

adjusted.  

For different number of enabled cores, we performed the experi-

ment for 20 rounds. In each round, we ran each benchmark pro-

gram on every enabled core, with randomly generated durations for 

the busy operations and the following idle period. We used our 

CPU power models to predict the CPU power consumption, and 

calculated the prediction accuracy by comparing the predicted 

values to the ground truth values measured by the power meter. 

The average prediction accuracy for the benchmark programs is 

95.6%, ranging from 95.0% to 96.2%, which demonstrates that our 

models significantly outperform the existing power models. 

4. CONCLUSION AND ON-GOING WORK 
In the paper we introduced our efforts toward providing better 

power management on multicore smartphones. We demonstrated 

that current smartphone applications are not fully utilizing multi-

core capability by studying the Web browsing performance with 

the Chrome browser. We also showed the existing solutions of 

modeling power consumption of CPUs do not work well in Nexus 

4, a quad-core CPU smartphone. Then, we proposed our idle-state-

based CPU power model, which is shown to be able to achieve 

95.6% prediction accuracy on different types of workloads.   

To further understand and optimize multi-core CPU performance 

on smartphones, we are currently working or plan to work on the 

following three research directions. 1) Further improvement on 

CPU power modeling. For example, to support heterogeneous 

multicore architectures, such as ARM big.LITTLE architecture 

used in Samsung Galaxy S4. 2) Comprehensive app study on mul-

ticore performances. By using the proposed CPU power model and 

kernel scheduling tools, we are conducting a comprehensive study 

on how applications are utilizing smartphones’ multi-processing 

capability as well as the corresponding power efficiency. We ex-

pect the study results can help us to identify, analyze and improve 

the bottlenecks in applications or OSes of fully exploiting compu-

tation power of multicore smartphones. 3) OS/API support for 

multicore CPU performance improvement in smartphones. We 

plan to investigate how to improve applications’ ability in exploit-

ing multicore CPUs. E.g., to improve OS’s efficiency regarding 

scheduling smartphone workloads, and to provide developer-

friendly APIs which require little or no effort from developers to 

exploit smartphones’ multi-processing capability. 
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