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Abstract—CPU is one of the most significant sources of power
consumption on smartphones. Power modeling is a key technique
and important tool for power estimation and management, both
of which are critical for providing good QoS for smartphones.
However, we find that existing CPU power models for smart-
phones are ill-suited for modern multicore CPUs: they can give
high estimation errors (up to 34%) and high estimation accuracy
variation (more than 30%) for different types of workloads on
mainstream multicore smartphones. The cause is that the existing
approaches do not appropriately consider the effects of CPU idle
power states on smartphones CPU power modeling. Based on
our extensive measurement experiments, we develop a new CPU
power modeling approach that carefully considers the effects
of CPU idle power states. We present the detailed design of
our power modeling approach, and a prototype CPU power
estimation system on commercial multicore smartphones. Evalu-
ation results show that our approach consistently achieves higher
power estimation accuracy and stability for various benchmarks
programs and real apps than the existing approaches.

I. INTRODUCTION

Battery life is among the most important factors that affect
the quality of service (QoS) provided by battery-powered
mobile devices such as smartphones. CPU is a major source
of energy consumption on smartphones [7]. For example, a
recent study shows that, on a quad-core Samsung Galaxy S3
smartphone, the CPU power is as high as 2,845 mW, which
is 2.53 times of the maximum power of the screen, and is
2.5 times of the maximum power of the 3G interface [8].
Therefore, accurate estimation and efficient management of
CPU power consumption are among the most important issues
in power management of multicore smartphones.

Power modeling is a lightweight and effective approach
to estimate smartphone CPU power consumption. Proper and
accurate power models of smartphone components benefit both
users and developers. For example, accurate power models
help to detect power hungry applications, and thus users get
better battery life of their smartphones [1]. Accurate power
models also help developers profile and optimize the energy
consumption of their smartphone applications [16]. Because
of its importance, power modeling has been attracting an
increasing amount attention recently [10], [14], [19]–[22].

Existing CPU power modeling approaches for smartphones
assume CPU operating frequency and CPU utilization are the
major factors that impact CPU power consumption [20]–[22].
However, we find that this assumption does not hold with
multicore CPUs on modern smartphones. Specifically, even

under the same frequency and CPU utilization, two workloads
with different CPU usage patterns (for example, as shown
in Figure 1) can consume very different amounts of energy.
Our experiments show that the difference can be as large
as 50% on a quad-core Google Nexus 4 smartphone (§III).
Therefore, current smartphone CPU power models are ill-
suited for modern multicore smartphones. For example, we
will later show that the current CPU power models can give
an estimation error as high as 34% (§VI). Moreover, the
same power model can have strikingly different estimation
accuracy for different types of workloads: the variation can
be larger than 30% (§VI). The root cause of this estimation
inaccuracy and instability stems from the CPU idle power
states, which consume markedly different amounts of power in
multicore CPUs. Workloads with different CPU usage patterns
cause the CPU to enter different idle power states during the
computation, which in turn leads to a different amount of
CPU power consumption. Since existing CPU power modeling
methods do not take into account the impact of CPU idle
power states, they exhibit high estimation errors and instability
for multicore smartphones in practice.

We carefully analyzed the impact of idle power states on
CPU power consumption, and developed a new CPU power-
modeling method that treats CPU idle power states as a major
factor of smartphone CPU power modeling. As a result, the
new modeling method is able to significantly improve power
estimation accuracy and stability. The model building process
is non-trivial indeed. As we will show in §IV, simply using
durations or numbers of entries of CPU idle states does not
work. Instead, we have found and experimentally verified that
weighted average entry duration of CPU idle states is a good
predictor to estimate the power consumption of a multicore
CPU. Based on the proposed model, we have designed and
implemented a prototype CPU power estimation system for
commercial state-of-the-art multicore smartphones. We have
also conducted extensive experiments to evaluate our prototype
system using a set of commercially representative embedded
benchmarks, as well as real mobile applications. The evalu-
ation results show that our method achieves a consistent and
high average accuracy of 98% for various benchmarks, and
96% for real applications, with negligible system overheads.

Our main contributions can be summarized as follows.
• We identify that existing CPU power modeling methods
for smartphones can be notably inaccurate and unstable in
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Fig. 1. Two periodic workloads with the same CPU utilization (50%) but
different CPU usage patterns.

estimating power consumption of multicore CPUs. We analyze
the root cause of the estimation inaccuracy and instability,
and show that different CPU idle power states, which are not
considered in existing CPU power modeling approaches, have
big impacts on CPU power consumption.
• We propose and develop a new idle-state-based CPU power
modeling method for accurate CPU power estimation on mul-
ticore smartphones. We demonstrate that simply considering
durations and numbers of entries of CPU idle states do not
work, and we show that weighted average entry duration of
CPU idle states is a good predictor to estimate the CPU power
consumption on multicore smartphones.
•We design and implement a prototype CPU power estimation
system based on the proposed model using commercial mul-
ticore smartphones. We also conduct extensive experimental
evaluations to evaluate our prototype system. The experimental
results show that our system achieves high accuracy and incurs
a negligible amount of overheads.

II. BACKGROUND AND RELATED WORK

A. Background
A smartphone CPU has different states: a CPU core can be

either online or offline (i.e., powered down). An online CPU
core can further work in either the operating state or an idle
state. Smartphone OS manages the states of CPU cores to
reduce their total energy consumption. There are three CPU
power management schemes used on modern smartphones:
CPU performance state management, CPU idle state man-
agement, and CPU hot-plugging. We briefly introduce the first
two, which are more related to this work.

CPU performance state management. When a CPU core
works in the operating state, all processor components are
powered up. In the operating state, a CPU core may operate
in different performance states (also known as “P-states”
in the ACPI specification [12]). Practically, each P-state is
associated with a fixed CPU operating voltage and frequency.
A technique called Dynamic Voltage and Frequency Scaling
(DVFS) is employed to adjust the operating voltage/frequency,
and thereby switch between different P-states.

In Android kernel (Linux-based), the “CPUfreq” subsystem
specifically copes with this task by dynamically adjusting the
operating frequency according to the system load [15].

CPU idle state management. Smartphone OS may put an
online CPU core into an idle state when there is no workload.
CPU idle states are called “C-states” in the ACPI specification
[12]. CPU in different C-states has different CPU components
switched to low power mode to reduce power consumption.

Table I shows the four CPU idle power states of the Google
Nexus 4 smartphone: C0 C1, C2, and C3. A CPU core in
the state C0 only disables most of the CPU clocks, while

TABLE I
CPU IDLE POWER STATES ON NEXUS 4.

Idle Name Idle System Latency

State Power (mW) (µS)†

C0 Wait for Interrupt 433 1
C1 Retention 390 415
C2 Power Collapse Standalone 330 1300
C3 Power Collapse 200 2000

Without entering idle states 1,060 0

†: The data is obtained from the Nexus 4 kernel source code.

keeping the core logic powered up. A core in the state C1
has its logic powered down, but retains the in-core L0/L1
cache content by keeping the cache powered up. A core in the
state C2 has more power savings than when in the C1 state,
since the in-core L0/L1 cache are also flushed and disabled.
Finally, a core in the state C3 achieves the most power savings
by further disabling the shared L2 cache. We have measured
the idle system power of each C-state in Nexus 4. The third
column of Table I shows the results. As a comparison, we
have also measured the case of not entering C-states, where
the idle system power is 1,060 mW. Entering a C-state can
save much power when a system is idle. It also shows that
power consumption of different C-states varies: the power of
C0 is as much as 2.1 times of the power of C3. Consequently,
entering different C-states may cause significantly different
power savings. In old single-core smartphones, there are fewer
CPU idle power states. For example, the Google Nexus S
smartphone (single-core) has only one idle state, which is
equivalent to the C0 state on Nexus 4. Therefore, CPU idle
states do not play a critical role in CPU power consumption on
old single-core smartphones as they do on modern multicore
smartphones.

Although entering idle power states reduces power con-
sumption when a CPU is idling, it comes with a price of
state switching overhead: the deeper an idle state is, the larger
the switching overhead will be. The fourth column of Table I
shows the latencies of switching between the operating state
and an idle state.This operating/idle state switching latency has
significant impact on performance of time-critical operations,
such as video and audio decoding.

In Android kernel, the “CPUidle” subsystem is specifically
designed for managing the CPU idle states.When the OS finds
no task to schedule, it directs the control to the CPUidle
subsystem, which then decides to put CPU into a proper idle
state based on several factors, including the predicted length
of the current idle period (based on the information on the
kernel scheduler and timers) and the operating/idle switching
latency of each individual idle state.

B. Related Work
Existing approaches for modeling CPU power consumption

can be classified into two categories as below.
CPU frequency/utilization based approaches. Existing

approaches for modeling CPU power consumption [9], [10],
[14], [18], [20], [22] on smartphones are all CPU frequency
and utilization based. They assume CPU frequency and utiliza-



tion as two major factors impacting CPU power consumption.
While this assumption works well for single-core smartphones,
where CPU idle states have little impact on CPU power, it
does not hold for multicore smartphone with multiple CPU idle
states, in which power consumptions are significantly different.

Some existing approaches of CPU power modeling also
consider CPU idle states [10], [19]. Specifically, Koala [19]
proposes a model based approach to estimate runtime system
power. In this approach, CPU idle states are considered as a
factor affecting system power consumption. However, Koala
only considers the time duration of each idle state, while
ignoring overheads of the operating/idle transitions. As we
will show later, even for two workloads with the same CPU
frequency/utilization and the same residency of idle states,
the CPU power consumption could have more than 20%
difference. Moreover, it only reports evaluation results on the
x86 architecture. Sesame [10] also considers CPU idle states in
modeling CPU power consumption. However, it does not pro-
vide description about how this particular information is used
in the modeling process. Similar to Koala, the idle states are
only considered in the laptop model (x86-based) in Sesame. In
our work, we focus our attention on measuring/investigating
the impacts of CPU idle state on ARM-based smartphone
CPUs. We also developed a new idle-state-aware CPU power
modeling approach based on the investigation results.

CPU hardware events based approaches. Another way of
performing CPU power modeling is to model the relationship
between CPU power and CPU hardware events [5], [6], [13],
[17]. For example, Power Containers [17] considers a linear
model between CPU power consumption and a series of hard-
ware events, including retired instructions, floating point op-
erations, last-level cache requests, and memory access. While
the CPU hardware events based approaches work well for PC
or server CPUs, whose ISA are mostly x86 based, they cannot
be applied in current smartphones. This is because although
many hardware events are recommended to be implemented in
the hardware monitor by the ARMv7 architecture specification
[4], only very few of them are mandated. For example, in
the CPU used by the Nexus 4 smartphone, only the hardware
events of instruction rate, number of instructions retired, and
branches executed and missed are implemented, which is not
enough to support the hardware events based modeling.

III. MOTIVATION: LIMITATIONS OF THE EXISTING
SMARTPHONE CPU POWER MODELS

The existing smartphone power models [10], [14], [19]–
[22] have achieved a good accuracy (e.g., more than 90%)
on previous single-core smartphones, such as the Nexus one
and Nexus S smartphones. These models consider only CPU
utilization and operating frequency as predictors in modeling
[20]–[22]. Usually, they use a linear CPU power model: for
each CPU frequency freqi, the power consumption of a CPU
core is estimated as

Pcpu = αfreqi × Ucpu + βfreqi (1)

where Ucpu is the CPU core utilization, and αfreqi and βfreqi

are two constant parameters whose values are determined
through linear regression during the model generation process.

However, the existing CPU power models are not suited
for modern multicore CPUs. In particular, we find that CPU
power consumption can exhibit a large range of variation
even when both CPU frequency and utilization are fixed. In
our experiments performed on quad-core Nexus 4 and octa-
core Samsung Galaxy S4, we develop a workload generator
program that periodically performs continuous computation
followed by an idle period (see Figure 1). By controlling the
ratio of the idle period to the computation period, the workload
generator program generates workloads with different CPU
utilizations. In the continuous computation, the program runs
a busy loop of computing a large prime. By changing the busy
loop count, we can also control the length of each continuous
computation period. We find that by adjusting the length of
each continuous computation, the power consumption of a
CPU core exhibits a large range of variation, even when the
CPU operating frequency and the utilization were fixed. For
example, Figure 2(a) shows the power consumption of a CPU
core of the Nexus 4 smartphone when the operating frequency
was fixed at 384 MHz. With fixed CPU utilization, the power
consumption of the CPU core dropped while the duration of
the continuous computation increased. Figure 2(b) and Figure
2(c) show the results when CPU frequency was 1,026 MHz
and 1,512 MHz, respectively. They show exactly the same
trend. Figure 2(d) further summarizes the difference of power
consumption with the three CPU frequencies. Each value in
Figure 2(d) is the percentage of the difference between the
maximum and minimal powers over the maximum power
for each frequency/utilization configuration. It shows that
the CPU power difference of workloads causing the same
CPU utilization under the same CPU frequency is significant,
especially when the CPU utilization is at a low level: when
frequency/utilization is fixed at 1,512 MHz/25%, the power
difference can reach as high as 50%. As we will explain later,
this is because the less a CPU core is being utilized, the
more chance the CPUIdle subsystem puts the CPU core into
a deeper idle state, which causes larger power consumption
variation when running different workloads.

The above results demonstrate that using only CPU operat-
ing frequency and utilization is not enough to build an accurate
CPU power model for multicore smartphones. On modern
multicore smartphones like Nexus 4, CPU power is determined
not only by the CPU frequency and utilization, but also by the
CPU idle power states which are not considered in the existing
smartphone CPU power models. Modern multicore CPUs like
the one of Nexus 4 have multiple idle power states which have
significantly different power consumptions. When utilization
is fixed, prolonging the duration of continuous computation
causes the corresponding idle period to increase accordingly.
Longer idle period allows the OS to put the CPU core into
deeper idle states more frequently, which in turn lowers the
CPU power consumption.

To further demonstrate how CPU idle power states can
affect power consumptions of different workloads running with
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Fig. 2. Workloads running in multicore CPU with the same CPU utilization and frequency consume notably different amounts of CPU power.

TABLE II
TIME DURATION PER SECOND AND NUMBER OF STATE ENTRIES PER

SECOND IN TWO WORKLOADS OF THE SAME CPU UTILIZATION (50%)
UNDER THE SAME CPU OPERATING FREQUENCY (1,512 MHZ).

Idle Time duration (ms) # of state entries
State W1 W2 W1 W2
C0 491.85 1.08 468 1.99
C1 0 0 0 0
C2 1.18 1.43 0.1 0.2
C3 5.12 496.86 0.2 7.3

the same CPU frequency/utilization, we list in Table II the
statistics of the idle states of two workloads (W1 and W2)
that were run on a Nexus 4 smartphone: the time duration per
second of each state, and the total number of entries per second
of each state. These two workloads were run with the same
CPU frequency (1,512 MHz) and the same CPU utilization
(50%), but they had significantly different power consumptions
(644 mW for W1, and 499 mW for W2). The two workloads
had notably different idle-state transition statistics as shown
in Table II: with the workload W2, the CPU core stayed at
the deepest idle state much longer than with the workload W1.
This explains why W2 consumed significantly less CPU power
than W1. Note that because the stock Nexus 4 kernel does not
enable the idle state C1, the numbers of C1 in Table II are 0s.

We also performed the above experiments on a Samsung
Galaxy S4 smartphone, which is equipped with a chipset
different from Nexus 4, and obtained similar observations.

IV. THE PROPOSED CPU POWER MODEL

In this section, we first present the development of our
power modeling approach for the single-core case, followed
by the discussion that how the single-core power model can be
extended to the multicore case. All the experiments described
in this section are performed on a Nexus 4 smartphone.

A. Power Modeling for a Single CPU Core

Similar to existing work, we use regression-based method
to integrate the predictors. To determine what statistics of
CPU idle states should be used as a predictor variable of the
regression model, we first consider TCi , which is the total time
duration that a CPU core stays in the idle state Ci per second
when frequency f and utilization U are fixed. Suppose the
total CPU idle time per second is Tidle, we have

Tidle =
∑
i

TCi (2)

Figure 3(a) shows TCi
for idle states C0 to C3 when we

ran our workload generator program on a single CPU core
(with f = 1, 512 MHz, U = 75%). Since the stock Nexus
4 kernel does not enable the idle state C1, statistics of C1

remain zero in Figure 3. Figure 3(a) shows that the CPU core
spent more time staying in deeper idle states as duration of the
continuous computation increased, because the idle period also
increased accordingly. However, TCi

is not a good predictor of
CPU power consumption. For example, after the computation
duration increased to 20 millisecond, TCi

(i = 0, 1, 2, 3) stayed
stable, but the CPU power actually kept decreasing as the
computation duration increased (see Figure 2(c)). In fact, in
our experiment, the power difference could reach 24% for the
same TCi

(i = 0, 1, 2, 3) (when f = 1, 512 MHz, U=25%).
Figure 3(b) shows ECi

, which is the number of entries for
idle state Ci per second, in the same experiment. For the same
TCi , smaller ECi means less operating/idle transition energy
overhead, and thus more energy savings. This explains our
previous observation that CPU power kept decreasing when
TCi

is unchanged. However, ECi
alone is also not a good

predictor of CPU power consumption, as it has no direct link
to energy savings by idle states.

We then look at the average entry duration for idle state
Ci, which is notated as EDCi

:

EDCi
=
TCi

ECi

(3)

Generally, EDCi
should be a good predictor of CPU power,

as it involves both idle state duration and state transition
overhead. However, EDCi

could suffer from noise, which
comes from those sporadic entries of idle state Cj when the
CPU remains in state Ci most of the time. For example, Figure
3(c) shows EDCi in the experiment. We can see that EDC3

was greater than EDC0 when C0 is the dominant idle state.
To eliminate noises in EDCi

, we apply a weight wi, which
is the portion of time the CPU stay at the state Ci over the
whole idle period, to EDCi

to form weighted average entry
duration WEDCi :

WEDCi
= wi × EDCi

, where wi =
TCi

Tidle
(4)

Figure 3(d) shows WEDCi
in the experiment. From the figure

we can see that weighted average entry duration is a good pre-
dictor of CPU idle state’s impact on CPU power consumption:
when CPU stays in idle state Ci, WEDCi increases as CPU
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Fig. 3. Single-core power model development. Figures (a)-(d) show TCi
, ECi

, EDCi
, and WEDCi

for the four CPU idle states C0 - C3, respectively
(with CPU frequency f = 1, 512 MHz, utilization U = 75%).

TABLE III
CPU POWER WITH DIFFERENT NUMBERS OF CORES RUNNING (WITH

UTILIZATION U=50%).
f=384 MHz f=1512 MHz

Nc PBL,Nc PCPU P∆,core PBL,Nc PCPU P∆,core

(mW) (mW) (mW) (mW) (mW) (mW)
1 62 144 82 62 495 433
2 73 213 70 73 902 415
3 73 282 70 73 1,312 413
4 73 348 69 73 1,732 415

Nc: number of cores that ran the workload.
PBL,Nc : baseline CPU power with Nc cores enabled.
PCPU : whole CPU power.
P∆,core: power increment per core.

spent more time in Ci, while WEDCj (i 6= j) remains zero.
As a result, we model power consumption of a single CPU
core working at frequency f as

Pcore =
∑
i

βCi ·WEDCi + βU · U + c (5)

where βCi
and βU are the coefficients of WEDCi

and the
utilization U , and c is a constant. For each CPU frequency
f supported by Nexus 4, we obtain the coefficients and the
constant by running linear regression analysis on the training
data containing different TCi and U , and the corresponding
Pcore (see §V).

B. Power Modeling for Multicore CPU

We further conduct an experiment to study how the single-
core CPU power model can be extended to multicore scenario.
In the experiment, we enabled different numbers of CPU
cores, which were running at the same frequency, and then
generated the same amount of workload on each enabled core.
We measure the CPU power while varying the core frequencies
and utilization. Table III presents the results for the cases when
core frequencies are fixed at 384 MHz and 1,512 MHz, and
the core utilization was 50%. In the table, the power increment
per core is calculated as P∆,core =

PCPU−PBL,Nc

Nc
, where Nc

is the number of cores enabled, PBL,Nc
is the baseline CPU

power when Nc cores are enabled, and PCPU is the whole
CPU power measured. We can see that P∆,core is consistent
for the same “frequency/utilization” with more than one core
enabled, but is notably smaller than the value when there is
only one core running the workload. The reason is that on
Nexus 4, when there are more than one core running, the
deepest CPU idle state each running core can enter is state C2.

The state C3, where the shared L2 cache is disabled, can only
be entered by core-0 when no other core is online. Therefore,
P∆,core for the single-core case is always greater than that for
the multicore case.

Based on our observation, we model a multi-core CPU
power consumption PCPU as

PCPU = PBL,Nc
+

Nc∑
i

P∆,core,Ui,fi (6)

where Nc is the number of cores enabled, PBL,Nc
is the

baseline CPU power with Nc enabled cores, and P∆,core,Ui,fi

is power increment of core-i when it is working at frequency
fi with utilization Ui. For each frequency fi, P∆,core,U,fi can
be predicted using the single-core power model developed
previously, while PBL,Nc is a constant value that can be mea-
sured beforehand. For Nexus 4, we need to model P∆,coreU ,fi

separately for the case when there is only one core is online
and when there are multiple cores are online, because these
two cases have different sets of CPU idle states.

V. PROTOTYPE SMARTPHONE CPU POWER ESTIMATION
SYSTEM

We have designed and implemented a prototype CPU power
estimation system using our idle-state-based CPU model on
Android platform. Figure 4 shows an overview of the system.
The system contains two parts: one runs in the kernel space,
and the other runs in the user space. In kernel space, the
data collector component collects necessary CPU usage data
including the CPU frequency, CPU utilization, and CPU
idle state statistics. In user space, the controller component
controls the procedure of model generation. To generate a CPU
power model, the controller runs a set of training programs,
starts the data collector, and collects CPU usage data. At the
same time, we measure the system power consumption using
a power meter, with the smartphone configured in a way that
CPU is the only major hardware component consuming system
power (see §VI-A). Using the measured power data and the
collected CPU usage data, the model generator component cre-
ates a CPU power model through linear regression. Although
our implementation is based on Android platform, we expect
the system design can also work on other mobile platforms
such as Windows Phone and iOS.

Collecting data in OS kernel. The data collector is
designed to work in OS kernel lightweight and efficient
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data collection. An alternative is to periodically sample CPU
utilization and CPU idle states in the user space via the high-
latency /proc and /sys filesystems. However, since our power
modeling approach needs CPU statistics for each working
frequency, which may change tens of times per second, the
user space alternative would need to poll the kernel with an
equally high frequency, which is impractical and inefficient.
With the kernel-mode data collection approach, we can ag-
gregate raw data, and report only the aggregated data to the
user programs via the system call interface. Consequently, this
approach can significantly reduce the number of user-kernel
mode switchings, and incurs much less system overheads in
collecting the data. Moreover, running the data collection in
the kernel allows us to obtain fresh and accurate data without
the latency of user-kernel mode switching.

The need of our approach to gather CPU statistics for each
working frequency also imposes a practical challenge on data
sampling. An accurate estimation would require the sampling
rate to be set to the highest possible value of frequency
changing rate, which can incur unnecessary system overheads,
since the sampling would be always done in a high rate
even when the actual CPU frequency changing rate is low.
To address the challenge, we took a different approach: we
take advantage of the CPUfreq and CPUidle subsystems of
the Android kernel to collect data efficiently. Specifically, we
piggyback our data collecting with activities of these two
subsystems. We instrument the subsystems so that we know
when the CPU frequency or CPU idle state are changed. Each
frequency change in the CPUfreq subsystem triggers a new
process of data collection for the new working frequency.
For each CPU idle state change in the CPUidle subsystem,
we collect new data about the previous CPU idle state and
aggregate them to the existing data. As a result, our data
collection can automatically adapt to CPU frequency changes,
and thus avoids unnecessary system overheads.

Figure 5 shows the data structure used in our data collector.
We collect the CPU usage data for each CPU core and each
CPU frequency separately. Suppose the CPU supports 12
working frequencies. For each CPU frequency, we record the
total CPU busy time and the total CPU idle time, based on
which the CPU utilization can be calculated. We also record
the CPU idle state information, including the total residency
time duration and the total number of entries of each CPU
idle state. With the data structure in Figure 5, we do not need
to record the raw data (e.g., the CPU usage data of every
trigger of data collection). Instead, for each trigger of data

Core 0
Core 1
Core 2

Freq. 0 CPU busy time
Freq. 1 CPU idle time

Idle state 0 Total time durationCore 2
Core 3

….

Idle state 0

Idle state 1

Idle state 2

Idle state 3

Total time duration
Number of entries

Freq. 11

Idle state 3

Fig. 5. Data structure used in the data collector.

collection, we simply update the corresponding values in the
data structure to aggregate the new data with the existing data.
As a result, our approach consumes a small and fixed amount
of memory. It uses much less memory when compared to
the approach of recording raw data, especially when the data
collecting time is long.

Generating CPU power model. To generate a CPU power
model, we run a set of training programs with various work-
loads and CPU usage patterns. We use the workload generator
described in §III to create training programs with different
CPU frequencies, utilization, and continuous computation du-
rations. For each CPU frequency, we train 3 CPU utilization
levels (25%, 50%, and 75%). For each CPU utilization level,
we train 8 computation durations (1 ms, 2 ms, 4 ms, 8 ms,
20 ms, 40 ms, 80 ms, and 200 ms). For each CPU frequency,
we also train the CPU idle case (5% utilization), and the CPU
busy case (100% utilization), but with a fixed computation
duration (100 ms). In total we have created 312 different
training programs. During the training, we first enable only one
CPU core, and run these training programs on the CPU core
to generate the single-core power model described in §IV-A.
Then we enable all cores, and run the training programs with
an identical process on each core, to generate the multicore
power model described in §IV-B. The whole model generation
procedure takes about 2 hours. We obtain the ground-truth
CPU power consumption manually by using a power meter.
One could also obtain the ground-truth value by referring to
the battery interface [10], [20], which allows for automated
model generation.

Applying CPU power model. We develop a user space
CPU power estimation C library that supports our CPU model
in user space programs. The library gets CPU statistics from
the data collector located in the kernel as shown in Figure 4,
calculates the estimated CPU power consumption, and reports
information to user programs as requested. The interfaces
provided by our C library to user programs include starting
and stopping the CPU power estimation period, getting the
estimated CPU power consumption of the estimation period,
and getting different CPU statistics, such as CPU online
information, CPU utilization, and CPU idle states information.

In total, our implementation has about 3,000 lines of code
(LOC) in C programming language, with 1,300 LOC in
kernel implementation and instrumentation, 800 LOC in the
controller component, 500 LOC in the CPU power estimation
C library, and 300 LOC in the model generator component.



TABLE IV
BENCHMARKS TESTED IN THE EVALUATION.

Benchmark Description
prime Compute a large prime.
basicmath Perform simple mathematical tasks.
qsort Quick sort over an array of strings.
susan Susan image recognition.
jpeg Encode/decode a JPEG image.
dijkstra The shortest path Dijkstra algorithm.
patricia Patricia trees of routing tables.
stringsearch Search for given words in phrases.
sha SHA secure hash algorithm.
aes Advanced Encryption Standard (AES).
crc32 32-bit Cyclic Redundancy Check (CRC).
fft Fast Fourier Transform (FFT).
pcm Pulse Cod Modulation (PCM).

VI. EVALUATION

A. Experimental Setup
We used a Nexus 4 smartphone, which is equipped with

a 1.5 GHz quad-core Snapdragon S4 Pro CPU, 2 GB RAM,
and 8 GB internal storage, and runs Android 4.2. We measured
the system power consumption using a Monsoon power meter
[2]. Since our focus is power consumption of CPU, we
disabled other hardware components as much as possible, such
as the screen, network interfaces (cellular, WiFi, Bluetooth,
and NFC), and sensors (GPS, accelerometer etc.). We also
killed all the background services and processes that were not
required to run the experiments. Each experiment was repeated
5 times and we report the average results.
The benchmarks. We used 13 benchmarks in our evaluation.
The first one is the workload generator described in §III. We
call it the prime benchmark. By replacing the prime compu-
tation part of the benchmark with other types of computation,
we created the other 12 benchmarks shown in Table IV. We
ported these 12 types of computation from MiBench, a free
and commercially representative embedded benchmark suite
[11]. These benchmarks cover a diverse set of computation
types that are widely used in networking, security, telecom-
munication, image processing, and many other scenarios and
applications. We ran each benchmark for 15 seconds with
the CPU utilization selected from 0% to 100% (randomly
and fixed, details later), and the busy loop count randomly
selected from 1 to 5 during each continuous computation
period. Depending on the type of the computation, the length
of continuous computation periods ranged from 10 ms to 1000
ms, with 250 ms being the average value.
The real applications. We also used the following 5 applica-
tions to evaluate our CPU power model.
• Web browsing: we used the Dolphin Browser [3] to load
five web pages pre-downloaded from www.nytimes.com. The
five pages include the homepage and four subpages. Dolphin
Browser is a popular web browser similar to Google’s Chrome
web browser, both of which are based on the WebKit engine.
We chose the Dolphin browser over the Chrome browser
because the Dolphin Browser provides more control interfaces,
which allow for automated tests.
• Map: we used Google Map to browse an offline map with
operations including zooming in/out, swiping, and moving the
map. We developed an automation tool to capture and replay
the user inputs on the touch screen, so that we could perform

the desired map operations automatically.
• App loading: we launched 8 real apps including Kingsoft
Office, ThinkFree Office, Chrome browser, Firefox browser,
Opera browser, Google Map, Baidu Map, and Ezpdf reader.
We did not choose any games because (1) the loading process
of many CPU intensive games (e.g., Angry Birds) terminates
when the screen is turned off, and (2) these games usually use
GPU for graphic processing, but GPU is not considered in our
power model.
• Video decoding: we used Dolphin Player to play a local MP4
video clip (30 frames/sec, 611 kbps bitrate) for 20 seconds.
We configured the player to perform software video decoding
using CPU. The playback was done with screen off and sound
volume set to minimal.
• Audio decoding: we used Google Music to play a local
MP3 song clip (44.1 KHz sample rate, 64 kbps bitrate) for
20 seconds. The Google Music decodes an audio file with
software.

Please note that the goal of conducting experiments on real
applications is to evaluate how our CPU power modeling and
estimation approach works on real app workloads in addition
to those ported from MiBench. If one wants to estimate the
power consumption caused by a particular app, she also needs
to consider power consumption generated by other hardware
components (e.g., WiFi, Bluetooth).
CPU power models to compare. To compare our power
model (labeled as IM) with the existing CPU power models,
we generated 4 utilization based CPU power models (i.e., cur-
rent CPU power models that consider only CPU frequency and
utilization) as follows. We used the same training programs as
in our model generation process (§V), but only considered
CPU frequency and utilization, ignoring the CPU idle states.
The 4 utilization based models (labeled as UM-1, UM-2, UM-
3 and UM-4) were generated using 4 different computation
durations: 2 ms, 8 ms, 20 ms, and 200 ms, respectively.
Once we generated the single-core power models, we further
created the corresponding multicore models according to the
procedure described in §IV-B. It is worth noting that in
previous work, utilization based CPU power models were
trained only on single-core CPUs. For fair comparison, we
extended the CPU utilization based power models to multicore
CPU case using the same method as we used in our approach.

B. Experimental Results
Accuracy of single-core models - benchmark experiment
results. We use power estimation error percentage (Epct) to
quantify the power estimation error made by different power
models in the experiments. It is defined as

Epct =
100× (Pe − Pm)

Pm
% (7)

where Pe is the power estimated by the power model, and Pm

is the power measured using the power meter. Then the power
estimation accuracy percentage (Apct) is defined as

Apct = 100%− Epct (8)
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Fig. 6. Single-core model estimation accuracy percentage (Apct) for the benchmark experiment.

TABLE V
POWER ESTIMATION ERROR PERCENTAGE OF SINGLE-CORE MODELS FOR THE BENCHMARK EXPERIMENT.

Power estimation error percentage Epct

Benchmark Random utilization 30% CPU utilization 60% CPU utilization 90% CPU utilization
IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4

prime 0.9 13.5 5.7 -1.9 -10.4 2.2 16.1 -2.1 -19.5 -27.4 0.2 8.2 2.2 -3.7 -12.0 1.4 3.1 4.2 5.9 -2.4
basicmath -0.7 10.4 5.3 3.4 -7.4 1.9 26.2 10.6 -3.7 -12.5 0.5 11.7 6.7 2.8 -6.0 -0.8 2.5 3.9 5.9 -2.4
qsort -6.0 -2.7 -7.9 -14.7 -22.2 0.7 14.9 -4.4 -23.3 -30.8 -5.1 -2.4 -7.8 -13.0 -20.5 -7.0 -8.6 -7.3 -5.5 -12.9
susan -1.0 6.6 -3.6 -8.0 -16.8 2.7 18.0 -4.1 -26.0 -34.3 0.1 7.3 0.9 -4.1 -13.6 3.2 5.2 6.7 8.7 0.2
jpeg 0.6 9.2 2.3 -4.3 -12.7 0.4 17.8 3.9 -7.0 -15.9 0.7 8.6 3.2 -1.9 -10.1 0.7 4.9 6.0 7.7 -0.8
dijkstra 4.9 19.2 13.0 7.9 -1.7 6.5 30.0 15.4 3.1 -6.7 5.6 16.5 12.9 7.0 -2.4 2.3 7.6 11.4 10.9 2.2
patricia 0.8 10.3 4.1 -1.3 -10.2 0.7 13.2 0.3 -10.4 -18.7 -0.9 8.0 3.0 -1.4 -10.7 -1.0 2.9 4.1 5.9 -2.4
stringsearch 1.5 9.8 1.4 -6.3 -15.6 4.0 21.3 -9.0 -19.1 -29.0 -2.1 6.1 -0.7 -5.8 -16.4 4.9 8.4 9.9 11.9 3.1
sha 5.8 18.0 11.6 6.1 -3.5 5.6 32.0 16.2 2.3 -7.2 5.2 14.6 11.3 5.2 -4.0 4.5 9.2 10.7 12.7 3.9
aes 0.5 9.0 3.4 -1.3 -9.9 5.8 17.7 5.8 -2.9 -12.0 1.8 9.8 4.9 0.5 -8.4 0.2 4.5 5.8 7.5 -0.9
crc32 2.2 12.3 4.5 -2.9 -11.5 1.2 12.9 -1.9 -15.4 -23.0 1.3 8.9 3.0 -2.5 -10.8 3.7 7.0 8.2 10.0 1.4
fft -1.2 8.8 2.8 -2.5 -10.9 0.3 12.2 0.9 -8.3 -16.5 -1.4 7.8 2.8 -1.5 -10.1 -1.8 0.9 2.2 4.1 -4.1
pcm 3.7 15.2 9.2 4.0 -5.5 7.8 24.9 10.2 -2.8 -12.1 2.2 10.6 5.7 1.3 -8.2 1.0 6.2 7.5 9.4 0.9

Figure 6 shows the single-core models’ power estimation
accuracy percentage in the benchmark experiment, where the
CPU utilization of running the benchmark programs was set
(by controlling the ratio between the idle period and the
computation period of the program) in four different ways:
random, 30%, 60%, and 90%. In the figure, the bar in a box
is the average accuracy of the model. The upper and bottom
borders of a box represent 75 percentile and 25 percentile.
The tips of the upper and bottom whiskers represent the max
and min values. Figure 6 (a) shows the case of random CPU
utilization. On average, our model achieved a high accuracy of
98%, with a small variation ranging from 94% to 100%. The
average accuracy and the range of accuracy variation of the
four utilization based models were (with the variation range
shown in the parenthesis): 89% (81%-97%), 94% (87%-99%),
95% (85%-99%), and 89% (78%-98%), respectively. We can
see that our model significantly outperforms the utilization
based models in terms of estimation accuracy and accuracy
stability. Although the average accuracy of UM-2 and UM-3
were not far below that of our model, they exhibited a much
larger range of accuracy variation for different benchmarks.
This is because different benchmarks have different CPU usage
patterns, which further cause different patterns of CPU idle
state entries. The utilization based models are not able to
capture the effect of these CPU idle state changes, which
are important dynamics affecting CPU power consumption.
By contrast, our model can well cope with this dynamic usage
pattern.

The accuracy of the existing utilization based models are
also subject to CPU utilization. Figure 6 (b), (c) and (d) show
more results when the CPU utilization was fixed at 30%,

60%, and 90%. We can see that the utilization based models
gave notably high errors in some cases, especially when CPU
utilization was at a low value. For example, when the CPU
utilization was 30%, the accuracy of model UM-4 can be as
low as 66%, and the accuracy of model UM-1 was only 68%.
This is because when CPU utilization is low, there is more
idle time, which in turn leads to more dynamic pattern of idle
state entries.

Table V further shows the detailed results about power
estimation error percentage for the same experiment. The
result suggests that for a given benchmark and certain fixed
CPU utilization, it is possible to find a CPU utilization based
model that achieves high estimation accuracy. However, that
model is likely to suffer high power estimation error in
other benchmarks or with other CPU utilization levels. For
example, when the CPU utilization was 30%, UM-2 achieved
almost 100% estimation accuracy for the benchmark patricia
(the estimation error percentage was only 0.3%). But UM-
2 estimated about 16% more than the ground truth value
for the benchmark program sha. Another example is that,
when the CPU utilization was 60%, UM-3 achieved estimation
accuracy of more than 95% for the benchmark susan (the
estimation was only 4.1% less than the actual value). However,
UM-3’s estimation was 26% smaller than the ground truth
value for the same benchmark program when CPU utilization
was 30%. In summary, it is not possible to have a single
CPU utilization based model to achieve a high and consistent
modeling accuracy in all the benchmarks and CPU utilization
levels. By contrast, our model, which considers CPU idle
states and thus can adapt to variation of CPU usage pattern,
is able to achieve a consistently high estimation accuracy in
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Fig. 7. Single-core model accuracy for the real-
app experiment.
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Fig. 9. Multicore model accuracy for the real-
app experiment.

all the benchmarks and different CPU utilizations.
Accuracy of single-core models - real application exper-
iments results. The similar observations can be found in
the real application experiments as well. Figure 7 shows
the single-core model accuracy in the five real application
experiments. We can see that our model also achieved a high
accuracy, 96% on average, with a variation ranging from 90%
to 99% for different applications. The accuracy is slightly
lower than that of the benchmark experiment. This is likely
because the applications had more flash disk operations, but
our model does not consider flash disk. Our model had the
lowest accuracy of 90% in video decoding. This is probably
because that the player used GPU which is also not considered
in our model. For the utilization based models, their accuracy
in the real application experiments exhibited a large range of
variation. The average accuracy and the range of accuracy
variation were: 93% (90%-97%), 91% (78%-96%), 85% (67%-
98%), and 80% (61%-92%), respectively.

We also examined the relationship between power esti-
mation error percentage and CPU utilization for the real
application experiments. Figure 8 shows the estimation error
percentage of all the models for the Web browsing application
under different CPU utilizations. We controlled the CPU
utilization by changing the time interval between loading
the webpages. We can see that the CPU utilization based
models gave a large range of accuracy variation when the
CPU utilization was different. In particular, when the CPU
utilization was low, they generate low model accuracy. In
the figure, the curve of our model is much flatter and the
estimation ratios are consistently close to 100%, indicating that
our model is also able to adapt to CPU utilization changes and
achieve consistent high estimation accuracy under different
CPU utilizations. We had the same observation for other
applications tested.
Accuracy of multicore models. Figure 10 shows the mul-
ticore models’ power estimation accuracy percentage in the
benchmark experiment, where we ran the benchmarks and
the real applications using all the four CPU cores. Table
VI shows the detailed data about the corresponding estima-
tion error percentage. Figure 9 shows the results of real-
app experiment. Similar to the single-core case, our model
achieved higher estimation accuracy, and a much smaller
range of accuracy variation than the existing utilization based
models. For example, when the CPU utilization was randomly

selected, the average accuracy and the corresponding accuracy
variation were as follows. For our model, the results were
98% (96%-100%) for the benchmark experiments, and 98%
(95%-100%) for the application experiments. For the four CPU
utilization based models, the results were 91% (76%-98%),
96% (86%-99%), 96% (86%-100%), and 95% (87%-100%)
for the benchmark experiments; and 94% (90%-97%), 88%
(81%-95%), 85% (79%-92%), and 84% (77%-91%) for the
real application experiments.

Compared to the single-core case, the accuracy percentages
of the four CPU utilization based models are relatively higher,
and the differences among the four models are relatively
smaller. This is because the Nexus 4 smartphone allows only
two CPU idle states (C0 and C2) when multiple CPU cores
are enabled. Thus, the impact of CPU idle states become
smaller. Nevertheless, we still have the same observations as
in the single-core case: 1) our model had a consistently high
accuracy in all the benchmarks and applications, and signifi-
cantly outperformed the CPU utilization based models; 2) the
CPU utilization based models caused a large range of model
accuracy variation for different benchmarks and applications,
and gave lower accuracy when the CPU utilization is lower.
As smartphone CPUs are becoming increasingly powerful,
smartphone CPU utilization is usually low for the most of
time. Thus, the CPU utilization based models tend to generates
high errors in practice. By contrast, our idle-state-based CPU
power model is able to adapt to CPU usage pattern changes
and utilization changes, and thus can accurately estimate CPU
power consumption with different workloads and different
CPU utilizations.
System overhead. From the 312 training programs (§V), we
chose those that cause the most frequent frequency changes
and idle state entries to evaluate the CPU overhead of our
system. On average, the chosen workloads incur about 40
frequency changes per second and about 450 entries of CPU
idle states. Although our implementation should have the
maximum system overhead when running these workloads,
we have seen no noticeable CPU usage increase. This is
because our data recording and reporting process is extremely
lightweight: only several variable updates when a frequency
change or idle state entry happens, and the data are reported
to user space only at the beginning and end of the power
estimation period. As for the memory usage, our prototype
implementation use about 8 KB kernel memory, with the
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Fig. 10. Multicore model estimation accuracy percentage (Apct) for the benchmark experiment.

TABLE VI
POWER ESTIMATION ERROR PERCENTAGE OF MULTICORE MODELS FOR THE BENCHMARK EXPERIMENT.

Power estimation error percentage Epct

Benchmark Random utilization 30% CPU utilization 60% CPU utilization 90% CPU utilization
IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4 IM UM-1 UM-2 UM-3 UM-4

prime 0.8 10.6 1.4 1.1 -0.6 0.1 7.3 -10.4 -9.2 -11.3 1.0 9.3 1.6 1.1 -0.4 -1.7 2.4 -1.8 -2.9 -4.1
basicmath -2.0 5.4 -1.5 -2.1 -3.5 -1.7 9.6 -2.2 -2.1 -3.8 -3.1 4.3 -4.0 -4.0 -4.2 -2.2 4.3 0.2 -1.0 -2.3
qsort -4.1 -3.0 -11.3 -11.5 -13.0 -3.5 -2.6 -20.4 -18.6 -20.7 -5.7 -3.3 -10.1 -10.6 -11.9 -5.5 -3.9 -7.8 -8.9 -10.0
susan 1.6 6.9 -3.7 -4.2 -6.2 0.8 3.3 -13.6 -12.7 -14.7 1.7 7.1 -1.0 -2.5 -4.3 1.4 4.8 0.6 -0.5 -1.8
jpeg 0.0 6.0 -0.9 -1.9 -3.4 0.4 5.7 -5.8 -5.8 -7.9 1.3 6.4 -0.7 -1.1 -2.5 1.8 7.1 2.9 1.7 0.4
dijkstra -1.2 13.2 5.1 4.7 3.1 -2.3 19.4 7.8 7.3 5.7 0.5 10.2 3.5 2.7 1.5 1.1 7.4 3.1 1.9 0.6
patricia -2.1 23.5 14.2 13.8 12.1 -1.8 20.6 8.6 8.1 6.7 2.2 13.3 6.4 5.5 4.2 2.8 12.5 8.1 6.8 5.4
stringsearch 2.6 9.4 -1.5 -1.9 -3.9 1.0 6.1 -10.9 -10.0 -12.5 1.2 7.0 -1.1 -2.7 -4.4 2.5 5.9 1.7 0.5 -0.8
sha 0.5 7.4 1.4 0.2 -1.2 -1.7 13.4 1.6 1.5 -0.2 1.3 7.1 0.6 -0.1 -1.3 1.2 7.4 3.2 2.0 0.7
aes 3.0 9.7 2.7 1.7 0.2 2.0 10.6 0.2 -0.5 -2.0 1.6 7.0 -0.6 -1.2 -2.8 2.4 7.9 3.6 2.4 1.1
crc32 4.1 15.0 6.5 5.7 4.1 4.4 12.2 -3.6 -3.0 -5.1 5.6 15.8 7.5 7.0 5.4 7.3 15.9 11.2 9.9 8.5
fft -2.1 2.2 -4.5 -5.4 -6.7 -1.4 4.9 -5.8 -6.0 -7.6 -2.3 2.7 -3.7 -4.4 -5.6 -3.5 2.8 -1.2 -2.5 -3.7
pcm -0.3 7.0 0.9 -1.6 -3.6 2.2 10.1 1.0 -0.4 -1.9 -1.0 5.3 -0.6 -1.7 -3.1 -0.8 4.8 0.9 -0.5 -1.8

majority consume by the data recording data structure.

VII. CONCLUSION AND FUTURE WORK

We demonstrated that existing utilization based smartphone
CPU power models are ill-suited for modern multicore smart-
phones. To address the problem, we developed an idle-state-
aware CPU power model for accurate CPU power modeling
in multicore smartphones. We designed and implemented a
prototype system to apply our new CPU power modeling
approach, and evaluated it using a diverse set of benchmarks
and real applications. Evaluation results show that our ap-
proach significantly outperforms the exiting methods in terms
of estimation accuracy and stability.
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