
ReACt: A Resource-centric Access Control System for Web-app
Interactions on Android

Xin Zhang

xzhang99@binghamton.edu

SUNY Binghamton

Binghamton, New York, USA

Yifan Zhang

zhangy@binghamton.edu

SUNY Binghamton

Binghamton, New York, USA

ABSTRACT
We identify and survey five mechanisms through which web con-

tent interacts with mobile apps. While useful, these web-app inter-

action mechanisms cause various notable security vulnerabilities

on mobile apps or web content. The root cause is lack of proper ac-

cess control mechanisms for web-app interactions on mobile OSes.

Existing solutions usually adopt either an origin-centric design or a

code-centric design, and suffer from one or several of the following

limitations: coarse protection granularity, poor flexibility in terms

of access control policy establishment, and incompatibility with

existing apps/OSes due to the need of modifying the apps and/or

the underlying OS. More importantly, none of the existing works

can organically deal with all the five web-app interaction mecha-

nisms. In this paper, we propose ReACt, a novel Resource-centric
Access Control design that can coherently work with all the web-

app interaction mechanisms while addressing the above-mentioned

limitations. We have implemented a prototype system on Android,

and performed extensive evaluation on it. The evaluation results

show that our system works well with existing commercial off-the-

shelf Android apps and different versions of Android OS, and it can

achieve the design goals with small overhead.

CCS CONCEPTS
• Security and privacy→Mobile platform security; Web appli-

cation security; •Human-centered computing→Mobile phones.

KEYWORDS
Web-app interaction, access-control, Android, binder replacement,

ART hooking

ACM Reference Format:
Xin Zhang and Yifan Zhang. 2021. ReACt: A Resource-centric Access Control

System for Web-app Interactions on Android. In Proceedings of the Web
Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3449960

1 INTRODUCTION
We are seeing a trend of tighter integration of web-based interfaces

and mobile apps/OSes [20, 33, 44]. We identify the following five

mechanisms that are commonly used for web-app interactions

on mobile devices (M1 to M5 below, more details in §2.1): (M1):

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449960

JavaScript-Java bridges expose resources owned or accessible by

mobile apps to web content and thus provide a convenient way

for mobile app developers to integrate their apps with their own

or third-party web services [2, 4]. (M2): HTML5 APIs allow web

content to access a wide range of device information and resources

[39–42]. (M3): The file URL scheme enables direct accesses to files
on device’s file system from web content [9, 34, 43]. (M4): Mobile
deep linking, which is an effective and popular way to enhance

mobile app user experience, allows users to open specific locations

within a mobile app from web pages rather than simply launching

the app [1, 6, 12, 28, 38]. (M5):Web event hooking provides a number

of function hooks which allow mobile apps to intercept/track user

web activities, and is a useful approach of realizing user-behavior-

based features in mobile apps [27].

The above web-app interaction (WAI for short) mechanisms

are useful for achieving rich functionalities and good user expe-

rience. However, they also cause security vulnerabilities which

allow various security attacks, such as sensitive user data leakage

[9, 27, 31], code injection and cross-site scripting (XSS) [9, 23, 31],

user-interface (UI) spoofing and phishing [25, 26], and web UI event

sniffing and hijacking [27]. The root cause of these security vulner-

abilities is the lack of proper access control (AC for short) mecha-

nisms for WAIs in mobile OSes. Several solutions have proposed to

provide AC protection for WAIs on mobile devices [13, 17, 18, 23–

26, 30, 35, 36]. However, these solutions adopt either an origin-
centric design or a code-centric design, both of which suffer notable

drawbacks (details later in §2.2).

In this paper, we present the design and implementation of Re-
ACt, a system that adopts a novel Resource-centric Access Control
design, which enables a unified way to provide fine-grained, flex-

ible, and practical AC protection for WAI mechanisms on mobile

devices. There are three key aspects of our resource-centric design,
which are summarized as follows (more details in §3).

• First, we observe that, in all the attack scenarios involving the

WAI mechanisms, the attacker’s goal is to obtain and/or take advan-

tage of certain resource of the device. Here the notion of “resource”

is not limited to conventional device resource, such as user data

and device location, but also include unconventional ones, such

as WebView instances in mechanism M4, and web event hooks in

mechanism M5. To coherently safeguard all the five WAI mech-

anisms, we extend the notion of “resource” to include all those

targeted by WAI related attacks.

• Second, existing solutions enforce AC policies either when web

content origin is determined (i.e., origin-centric) [17, 36], or when

certain methods of mobile apps or web code are invoked (i.e., code-

centric) [13, 18, 24, 35]. However, both of these timings either do not

necessarily link to resource accesses, or cause coarse-granularity of

https://doi.org/10.1145/3442381.3449960
https://doi.org/10.1145/3442381.3449960

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xin Zhang and Yifan Zhang

Table 1: The five web-app interaction mechanisms

Web-app interaction mechanism Notation Interaction direction

M1: JavaScript-Java bridge JJB web→ app

M2: HTML5 APIs H5A web→ app

M3: file URL scheme FUS web→ app

M4: Mobile deep linking MDL web→ app

M5: Web event hooking WEH app → web

resource protection. By contrast, ReACt adopts a resource-centric
design, which enforces AC policies when specific resources are

accessed. As a result, ReACt can provide definitive and fine-grained

web content AC for all the five WAI mechanisms coherently.

• Third, resources related to WAI mechanisms are concerned by

different participants of the mobile-web ecosystem. For example,

resources exposed by the JavaScript-Java bridge mechanism can

be either system resources (e.g., SMS, contact list, device location),

which are concerned by the device user, or app-defined resource

(e.g., home address input by the app user), which the app developer

knows the best whether should be protected. Another example is

that with mechanism M5 (i.e., web event hooking), web developers

should make the decision whether certain apps can track the events

of their web content via event hooks. Therefore, ReACt supports
different ways of establishing resource AC policies: establishment

according to user preferences, establishment by mobile app devel-

opers, and establishment by web developers.

We also find that current AC solutions for WAIs usually require

rewrite/recompilation of mobile apps [13, 17, 18, 23, 24, 35, 36], or

modifications to the OSes [18, 24–26, 36]. Thus, they either cannot

work for existing installed apps, or require OS re-flashing which

harms deployability on mobile devices that are currently in use. We

aim to allow ReACt to function normally without the need of modi-

fying existing mobile apps or re-flashing mobile OSes. Achieving

this goal is not trivial, since ReACt’s resource-centric design relies

on monitoring and managing device resource accesses, which are

OS-level activities and thus are difficult to control without modify-

ing apps or the OS. To address the challenge, we implemented the

ReACt prototype system following the Boxify app virtualization

approach [7], which allows the interaction between unmodified

apps and the Android OS to be monitored by a trusted sandbox

app. In our system, the role of such a trusted sandbox app is ful-

filled by the ReACt manager, which is a user-level app and provides

a brokered execution environment for the unmodified apps. The

brokered execution environment allows the ReACt manager to in-

tercept accesses to system resources (via replaced Android binders)

and app-defined resources (via ART
1
hooking [16]).

The above implementation strategy also offers great flexibility

in AC policy establishment. Most of the existing works require app

recompilation and/or OSmodification to integrate the AC policies to

their system. With our solution, the ReACt manager reads WAI AC

policies (§3.4), which are written using our resource-centric policy
language (RCPL), from device flash and enforces them within the

brokered execution environment. As a result, the AC policies can be

generated/updated dynamically without any app/OS modifications.

More details about our system implementation are presented in §4.

1
ART (Android Runtime) is the application runtime environment used by Android.

Listing 1: Enabling JavaScript-Java bridge in an Android applica-
tion (Java code).
1 WebView wv = ...; // Initialize a WebView object
2 ...
3 public class AppMngtWebIntf {
4 ...
5 @JavaScriptInterface
6 public String GetDeviceIMEI() {
7 // return device IMEI as a string
8 }
9 @JavaScriptInterface
10 public void GetUsrSSN() {
11 // obtain user SSN provided to the app
12 }
13 public void InternalMethod() {
14 // JavaScript code cannot access this method
15 }
16 }
17 wv.addJavaScriptInterface(new AppMngtWebIntf(), "

AppMngtObj");

Listing 2: Invoking JavaScript-Java interface in web content
(JavaScript code).
1 <script>
2 devIMEI = appMngtObj.GetDeviceIMEI();
3 appMngtObj.GetUsrSSN();
4 ...
5 </script>

In summary, we make the following contributions in this paper:

•We systematically examine the state of the art of WAIs on mobile

devices, and identify five mechanisms for such interactions and

their security vulnerabilities.

• We propose a resource-centric AC design, which innovatively

extend the notion of resource according to the aims of WAI-related

attacks. To the best of our knowledge, our solution is the first that

can coherently achieve fine-grained and flexible AC for all the five

WAI mechanisms.

• We implement a prototype system which applies the proposed

resource-centric AC design on Android without modifying the

source code of apps and the underlying OS. As a result, our proto-

type system is compatible with installed apps, which is a feature

few existing solutions have.

• We systematically evaluate the ReACt prototype system with

real-world experiments. The evaluation results suggest that our

system is compatible with existing Android apps and OSes, and can

achieve the design goals with small runtime overhead.

2 BACKGROUND AND RELATEDWORK
2.1 Background
WebView [3, 5, 29] is a type of mobile app UI element which can

be considered as a mini web browser embedded in mobile apps

to display web contents. WevViews support different mechanisms

for web content to interact with the content rendering apps. We

introduce theseWAImechanisms and the possible attacks as follows

(a notation summary of the mechanisms is given in Table 1).

(1) JavaScript-Java bridge (JJB). The JJB mechanism provides a

means for web content to access resources exposed by mobile apps.

It allows app developers to register Java object in their apps’ Web-

View instances, so that JavaScript code loaded into the WebView

instances can invoke the Java object’s methods within the Java

ReACt : A Resource-centric Access Control System for Web-app Interactions on Android WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

$WWDFNHU
DSS�$

SUHSDUHV�D¬
ORFDO¬+70/¬ÀOH¬)¬
ZKLFK�FRQWDLQV
PDOLFLRXV�FRGH

9LFWLP
DSS�9

:HE9LHZ�RSHQV�WKH
ORFDO�+70/�ÀOH�)¬
DQG¬H[HFXWHV¬
WKH�FRGH�LQVGH

&RGH�LQ¬)¬FDQ¬OHDN¬
WKH�V\VWHP�UHVRXUFH

RI�ZKLFK�DSS¬9
KDV�WKH�SHUPLVVLRQ

,QWHQW��^ÀOH����WR�ÀOH�)�����`

Figure 1: Intent-based attack scenario of using file URL scheme.

objects. Listings 1 and 2 present an example in Android. Listing 1

shows the code snippet from an android app. In this example, the

app contains one Android WebView instance wv (defined and ini-

tialized at line 1). The app developer implements a Java class named

AppMngtWebIntf (line 3-16), where three methods are defined: the

first (i.e., GetDeviceIMEI()) is to obtain the device’s IMEI; the

second (i.e., GetUsrSSN()) is to obtain the SSN that the user has

previously input to the app; and the third (i.e., InternalMethod())
is a method for internal use. Here the device IMEI is a type of sys-

tem resource, and user SSN is a type of app-defined resource. The

developer then adds an AppMngtWebIntf object to the WebView

instance wv using WebView class’s addJavaScriptInterface()
method (line 17). Then the AppMngtWebIntf object can be refer-

enced through the object name “appMngtObj” by JavaScript code

running inside theWebView instance. Listing 2 shows how JavaScript

running in WebView can invoke the aforementioned Java object’s

methods to obtain device IMEI and user SSNs.

The major vulnerability here is that exported Java methods (e.g.,

the GetDeviceIMEI() and the GetUsrSSN() in the above example)

can be accessed by any web code running in WebView, and there-

fore can be exploited by malicious web code to steal private user

information. There have been multiple efforts in address this vul-

nerability [13, 17, 18, 24, 30, 35, 36]. But they suffer from different

drawbacks as will be discussed later in §2.2.

(2) HTML5 API (H5A). H5A allows JavaScript in web content to call

a set of APIs defined by the HTML5 specification to access system

resources, such as device geolocation [32, 40], file system [39], and

media stored on device [42]. Most platforms support reporting

the origins of web content that makes resource access requests

using H5A to applications. It is the app developers’ responsibility to

properly implement AC functionality for those requests. However,

a recent study has shown that handling such AC is cumbersome

and error-prone [35]. Therefore, it will be beneficial to enable an

automatic AC mechanism for resource accesses initiated by H5A.

(3) file URL scheme (FUS). FUS enables web content to access

device local files. Before Android 4.1 (API Level 16), JavaScript

running in the context of a file scheme URL can access con-

tent from any origin [19], which allows attackers to load mali-

cious JavasScript embedded in local files by including file scheme

URLs in intents sent to apps with WebView or in local or pub-

lic domain web pages. Since Android 4.1, the default values of

WebView

The "initiator" app
(i.e., the attack launching point)

...
appD://...

...

Page P

App D (usually without navigation
bar in its WebView)

(i.e., the "deputy" app)

(1) User navigates
to web page P using

the initiator app

(2) User clicks the mobile deep link
(e.g., appD://webview/?url=http://phising-page-against-app-V)

embedded inside the page P

(3) Intent asking D
to open the

phishing page
using D's WebView

(4) Showing the phishing
page against App V

(i.e., the "victim" app)

D's WebView

Figure 2: Mobile-deep-liking-based phishing attack scenario.

setAllowFileAccessFromFileURLs and setAllowUniversalAcc
essFromFileURLs have been changed to false [19], which by de-

fault prevents attackers from launching attacks by using web do-

mains. However, file access (i.e., setAllowFileAccess) is enabled
by default with the latest version of Android, and thus attackers can

still use intent to trigger victim app to open and execute malicious

JavaScript existing in local files using file scheme URLs. Figure 1

illustrates such attack scenario. The attack would allow the attacker

to obtain system resource, such as device location, which it does

not have the permission to access.

(4) Mobile deep linking (MDL). MDL is a useful mechanism that

allows web content to access a specific location within a mobile app

other than simply launching the app [1, 12]. However, recent studies

have shown that the MDL mechanism can be exploited to launch

UI spoofing and phishing attacks [25, 26]. Figure 2 summarizes the

attack process. First, a user uses the initiator app and navigates to a

web page which contains an attack mobile deep link targeting the

deputy app D (step-1). Here the initiator app is benign, and can be

an app with WebView or a web browser. The User then clicks the

attack link (step 2), which leads the initiator app to send an intent to

the deputy app D asking it to open the phishing page (step-3). The

deputy app is also benign, and is being exploited by the attacker to

show a phishing page which impersonates the UI of another app

(i.e., the victim app). Finally, the deputy app displays the phishing

page (step-4). Please note that the deputy app D is chosen because

its WebView activity does not contain any UI element (e.g., title bar)

which would allow the user to be aware of the attack by noticing

the victim app UI is displayed as a web page in a WebView. More

details of the attack can be found in the work by Li et al. [25].

The above attack can be addressed if app D’s developer takes
extra caution, for example, by setting the WebView of her app as

private, or validating the content of incoming intents before serving

them. However, such security measures may not be adopted or

correctly implemented by app developers due to their inexperience.

Thus, a mandatory AC mechanism is needed to protect MDLWAIs.

(5) Web event hooking (WEH). The WEH mechanism enables WAIs

from mobile device to web content. With WEH, a list of web event
function hooks provided by WebView are made available for An-

droid apps. These event hooks are invoked when certain web ac-

tivities happen, such as when the web page finishes loading and

when the web page loads certain resource (e.g., image and video).

App developers can establish their own handlers for these event

hooks. Although WEH allows mobile apps to closely interact with

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xin Zhang and Yifan Zhang

Table 2: Comparison of access control solutions for web-app interactions on mobile devices

WAI mechanism targeted Fine-grained Require no app Require no OS Dynamic AC policy

JJB H5A FUS MDL WEH control modification modification establishment

Morbs [36]

√ √ √

Jin et al. [24]

√ √ √

NoFrak [17]

√ √ √

PowerGate [18]

√ √ √

Draco [35]

√ √ √ √ √ √

WIREframe [13]

√ √ √ √ √

HybridGuard [30]

√ √ √ √

Li et al. [25]

√ √

Liu et al. [26]

√ √

ReACt (this work)
√ √ √ √ √ √ √ √ √

web content, it also allows attackers to abuse the event hooks to

launch attacks like web UI event sniffing and hijacking [27]. The

cause of the problem is that there is no restriction for the hosting

app to update individual event hooks. Therefore, a potential solu-

tion to the problem would be an effective AC mechanism for using

the event hooks.

2.2 Related work: origin-centric & code-centric
designs for WAI access control

Existing solutions on addressing the AC problems of different WAI

mechanisms user either the origin-centric design or the code-centric
design, which are introduced as follows.

2.2.1 Origin-centric design. With this design, resource access

requests from web content are granted based on origins of the

content using whitelisting and/or blacklisting methods [17, 36].

Here the origin of web content refers to the URI of the content,

which consists of scheme, host name, and port number [21].

The drawbacks of the origin-centric design arise from its coarse-

granularity of protection. On one hand, if certain web content

passed the origin filtering, it would be granted the same permis-

sions as the hosting app, which, however, could open the door for

different permission-related attacks [8, 15, 22]. On the other hand,

if the web content were blocked, it would be impossible for the web

content to obtain any permission-protected device resource, which

could obstruct useful and benign services. For example, location-

based advertising (LBA), which is an important part of mobile

ecosystem [14] relies on user location information to deliver proper

ad content. However, it is unlikely for LBA web content to ob-

tain such permission-protected information with mobile web apps

adopting the origin-centric design, since the origins of advertisers

are different from those of the services associated with the apps,

and thus are usually blocked by origin-centric policies.

2.2.2 Code-centric design. To address the coarse-grained pro-

tection problem, solutions adopting the code-centric design [13, 18,

24, 30, 35] focus on the following two aspects: one is analyzing and

adapting the code of existing mobile apps and/or web content such

that proper AC policies can be applied to individual Java and/or

JavaScript methods that may lead to device resource accesses; the

other is providing a means for app/web developers to define AC

policies for the methods in their newly developed code.

The code-centric design achieves finer AC granularity because

it can treat requests from web content with the same origin differ-

ently. However, the code-centric approach has its own limitations.

• First, this approachmay not be able to correctly prevent unwanted

accesses to device/app resources, since method invocations in mo-

bile apps may not necessarily lead to resource accesses. Therefore,

code-centric AC solutions need to determine whether and what re-

sources are eventually accessed by different methods. For instance,

Draco [35], a recent code-centric AC solution on JJB, infers poten-
tial resource accesses from exposed Java methods by performing

static code analysis, which however may not always generate the

correct results. One possible solution is to involve app developers

into the AC design, as they have the full knowledge of the relation-

ship between app code methods and resource accesses. But such

solution requires redevelopment of apps and thus is not compatible

with already-installed apps.

• Second, the code-centric approach cannot treat different resource

accesses originating from the same method invocation differently.

• Third, it is difficult to extend the code-centric approach to nat-

urally work with other WAI mechanisms that do not generate

accesses of conventional resource (such as MDL).
More details of the above two designs will be provided when we

compare them with our resource-centric design in §3.3.

3 SOLUTION DESIGN
3.1 Adversary model
The attackers aim to exploit the vulnerabilities of the five WAI

mechanisms to launch the attacks as introduced in §2.1. We make

the following realistic assumptions about the attackers and the

mobile apps in this work. (1) For the web to app interaction mech-

anisms (i.e., JJB, H5A, FUS, and MDL), we assume the attacker has

control over web domains into which malicious web content can be

inserted. (2)We assume malicious web content is reachable from

user’s apps with WebView or web browsers, for example, by care-

less domain control implementations in individual apps, or by web

code’s usage of iframe which can load untrusted web content. (3)
We assume apps under ReACt’s protection are not malicious (in

other words, these apps will not try to detect and reverse ReACt’s

ReACt : A Resource-centric Access Control System for Web-app Interactions on Android WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

protection). (4) For JJB, we assume the attacker has the information

of exported Java methods, which can be achieved by downloading

and reverse-engineering the victim apps. (5) For FUS, we assume

the attacker can place files with malicious JavaScript in victim de-

vice’s file system. This can be achieved, for example, by providing

benign-looking attack apps which can access device’s file system.

3.2 Design goal
Table 2 shows the limitations of the existing solutions, which are

summarized as follows. (1) First and most importantly, the existing

solutions target a subset of the five WAI mechanisms. To the best of

our knowledge, there has been no solution that can work with all

the five mechanisms coherently. (2) The protection granularity is

coarse due to the origin-centric design code-centric approaches. (3)
Most existing solutions are not compatible with already-installed

mobile apps and OSes, as they require app and/or OS modifications.

(4) Most existing solutions require app/OS changes to integrate

AC policies into their systems. As a result, they do not support

generating new or changing existing AC policies during runtime.

Our goal is to address the above four limitations. The first two

limitations are addressed by our resource-centric AC design which

is to be introduced next, and the latter two are solved by our imple-

mentation strategy which will be presented later in §4.

3.3 ReACt: Resource-centric Access Control
3.3.1 Motivating observations. Our resource-centric design is

inspired by the following two key observations. (1) The goal of

performing AC on WAIs is to protect device resources from be-

ing accessed maliciously. Therefore, the most effective timing to

perform AC is when device resource is actually accessed. (2) We

observe that in all the WAI attack scenarios, the attacker’s goal

is to obtain or take advantage of certain resources, which can be

conventional resources, such as system/app-defined resources, or

unconventional ones, such as a “deputy” app’s WebView instances

and web content’s event hooks. Therefore, protection from the per-

spective of resource accesses can be a promising way to coherently

safeguard all the five WAI mechanisms,

3.3.2 The resource-centric design. Given the above two obser-

vations, the idea of ReACt is to monitor resource accesses and

enforce AC policies when actual accesses occur at system level. Fig-

ure 3 compares the origin-centric and the code-centric designs with

our resource-centric design for the JJB mechanism on Android.

Before discussing the details, a brief introduction of the process of

web content accessing device resources through the JJBmechanism

is necessary. The JJBmechanism on Android involves four entities:

an Android app, the app’s WebView instance (whose functionalities

are provided by Chromium [10]), the Android OS, and the hardware.

When the WebView instance loads the web content (i.e., the step-1

in Figure 3), the renderer thread of it parses the web content (step-

2). Upon seeing Java object method invocations when parsing, the

renderer thread passes the IDs
2
and the parameters of the invoked

2
Chromium assigns IDs for methods of registered Java objects, and uses these IDs to

identify and reference those methods internally.

Resource-centric
AC enforcement

Renderer thread
(Chromium)

3-ID and params
of invoked

Java method

2-Content
parsing

Origin-centric
AC enforcement

Background thread
(Chromium)

Android
app

5-Call Java method

4-Java method
call preparation

Code-centric
AC enforcement

6-Resource req

Android
framework

/ Linux kernel
Hardware

7-Resource access

Repeat for

every Java

method invoked

Repeat for

every resource

requested

(A)

(B)

(C)

1-Web
content

Figure 3:Comparison of the origin-centric, the code-centric, and the
resource-centric access control approaches for the Java-JavaScript
bridge mechanism in Android.

methods to the background thread of the WebView instance
3
(step-

3). Then the background thread performs preparation work for

calling the Java object’s method (step-4), and invokes it (step-5).

The Java object’s method eventually makes request(s) to access

certain system or app-defined resource (steps 6 & 7).

With the origin-centric design, AC policies, which look like “Web
requests from origin X are allowed (or not allowed)”, are enforced
right after the renderer thread parses and obtains the origin of

the web content. Therefore, the AC is applied to all the resources

requests from the same origin regardless user’s preference.

With the code-centric design, better protection granularity can

be achieved because its AC policies, which look like “Web requests
from origin X are allowed (or not allowed) to access resource Y”, are
enforced based on the invoked Java methods. However, the connec-

tion between a method invocation and resource access need to be

determined by rewriting the app code (which is incompatible with

installed apps) or by inference (whose correctness is not guaran-

teed). In addition, if different resources are accessed in one method,

they cannot be treated differently (i.e., the AC granularity is still

coarse).

With our resource-centric design, AC policies, which look like

“Accesses to resource X can (or should not) be granted if the resource
consumer is Y”, are enforced when specific resource is accessed

at system level so that we can treat individual resource accesses

differently even if they come from the same origin or the same

method. Here the notions of “resource” and its “consumer” differ

for differentWAI mechanisms, and are summarized in Table 3. More

details of “resource” and “consumer” are presented next in §3.4.

3.4 The resource-centric policy language (RCPL)
We define RCPL, a declarative resource-centric policy language

which is used to establish resource AC policies in our system. The

syntax of RCPL is described using the Backus-Naur Form (BNF)

notation [37]. An RCPL rule is defined as:

3
Chromium uses the background thread to enable concurrent JavaScript compilation.

Interaction between JavaScript and Java objects also takes place in this thread.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xin Zhang and Yifan Zhang

Table 3: “Resource” and its “consumer” in ReACt’s AC policies.

Resource Resource consumer

JJB Resources accessible from Web domains which make use of

an app A’s exposed methods app A’s exposed methods

H5A Resources accessible Web domains which host

from the HTML5 APIs the HTML5 code

FUS Resources accessible Sender app
2
of the intents which request

by an app A1 A to open a file scheme URL

MDL An app A’s
3
WebView Domains of the web content to

instances(s) be displayed
4
in A’s WebViews

WEH Web content’s event hook(s) An app A which displays the web content

1: In the context of Figure 1, the victim app V is the app A here.

2: In the context of Figure 1, the attacker app A is the sender app here.

3: In the context of Figure 2, the deputy app D is the app A here.

4: In the context of Figure 2, the phishing page is the web content to be displayed here.

<RCPL rule> ::= <resource> “-” <consumer> “-” <permission>

3.4.1 Resource definition. The “resource” in the above rule rep-

resents the resource being protected by the rule, which can be (1)

device system resource, (2) app-defined resource, (3) app WebView

instances, or (4) web event hooks. Thus the rule of “resource” is

defined as:

<resource> ::= <system resource> | <app-defined resource> |

<webview resource> | <EH resource>

System resource protected by ReACt is similar to those guarded

by Android’s permission system. Currently our prototype system

supports four types of resource: device’s location, phone number,

contact list, and calendar. The rule of system resource is defined as

follows (more can be added when the corresponding implementa-

tion is added to the system).

<system resource> ::= “gps” | “phone_number” | “contacts” |

“calendar” | ...

Among the five WAI mechanisms, JJB, H5A, and FUS are able to

expose system resource to their users.

App-defined resources are those created by individual apps. For

example, app A collects user home addresses and exposes them

to the web via the JJB mechanism. In this case, the user home

addresses collected are a type of resource defined by A. Since

app-defined resource can only be obtained through exported Java

methods in JJB, they are represented by the corresponding Java

methods in RCPL’s syntax:

<app-defined resource> ::= <exported method> | <exported

method> “,” <app-defined resource>

<exported method> ::= <package name> : <class name> “:” <method

name>

<package name> ::= <token> | <token>“.”<package name>

<token> ::= “*” | string
<class name> ::= string
<method name> ::= string“()”

In the above syntax, “package name” refers to the package name of

the app which defines the resource.

WebView resource is targeted in MDL-related attacks. For exam-

ple, the WebView instance of the “deputy” app (i..e, the app D in

Figure 2) is exploited by attackers to display spoofed web content

which mimic the UI of a victim app. Since WebView instances and

their hosting apps are uniquely related, we use package name of

the app to represent WebView instances(s) in RCPL’s syntax. We

support the asterisk wildcard character (*) in the representation

of package names, such that an RCPL policy rule can be used to

describe the WebView resource of a group of apps. The rule of

webview resource is defined as follows.

<webview resource> ::= <wv> | <wv> “,” <webview resource>

<wv> ::= “webview@”<package name>

Web event hook (EH) resource is targeted in WEH related attacks.

Specifically, an attack app can exploit the web event hooks to track

user activity or hijack events when web pages of a targeted web

domain are being displayed in the app’s WebView. Therefore, in

RCPL’s syntax, web event hook resource is represented by the

combination of web domain and a specific web event function hook.

The asterisk wildcard character is used in the syntax to support

protecting a range of web content with a single rule. The rule of

EH resource is defined as follows.

<EH resource> ::= <web domain> “+” <event hook>

<web domain> ::= “web:”<domain>

<domain> ::= <subdomain>“.”<domain> | string
<subdomain> = “*” | string
<event hook> = “*” | “onPageStarted” | “onPageFinished” |

“onReceivedLoginRequest” | “onLoadResource” | ...

The definition of web domain in the above syntax can be replaced by

URL to support finer control granularity for web content. There are

20web event function hooks supported inAndroid’s WebViewClient
class, four of which are shown above, as of Android API level 24.

3.4.2 Consumer definition. The “consumer” in an RCPL rule

represents the entity that can potentially make access request to

the “resource” specified in the rule. As summarized in Table 3, there

are two types of consumer: web consumer and app consumer. Web

consumer is represented by the web domain name (defined above),

and app consumer is represented by app name in RCPL’s syntax.

<consumer> = <web domain> | <app name>

<app name> ::= “app:”<package name>

To express the notion of “all but” for consumer representation, we

use the notation “!{subject}” to represent “all the consumers except

the one enclosed”.

3.4.3 Permission definition. The “permission” in an RCPL rule

specifies what type of access requests the mentioned “consumer”

can be made to the mentioned “resource” in the same rule.

<permission> = “read” | “write” | “read_write” | “call” | “none”

The “read”, “write” and “read_write” permissions above are applied

to system resources, and the “call” permission is applied to app-

defined, WebView, and EH resources.

3.5 Establishing AC policies and dealing with
resource accesses in WAIs

ReACt AC policy establishment is performed by users, app devel-

opers, or web developers, depending on the type of the resource.

In the following, we elaborate the reasons, and describe how AC

policies are established for each of the four types of resource.

3.5.1 AC policy establishment for system resource. AC poli-

cies for system resource are established based on user preferences.
The reason is two-fold. First, mobile device users are best suited

to decide if certain system resources, such as device location and

ReACt : A Resource-centric Access Control System for Web-app Interactions on Android WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

contact list, should be accessed by an external web domain or an

app on their devices. Second, this approach is in accordance with ex-

isting Android usage experience that system resource is granted to

individual apps based on user’s choice during runtime. With ReACt,
when certain system resource is about to be accessed, such an ac-

cess attempt is intercepted and the resource consumer is identified.

If the existing AC policies do not contain information about how

to handle the access, the user is prompted whether the resource

should be granted to the consumer. Based on the user’s feedback,

the ReACt runtime system automatically generates an AC policy,

which applies to the pending access attempt, as well as the same

type of resource requests in the future.

Recall that among the five WAI mechanisms, system resource

can be exposed by JJB, H5A, and FUS. Next, we make three examples

to illustrate how accesses to system resources, which are exposed

by the three mechanisms respectively, are dealt with in ReACt.

Example 1: system resource exposed by JJB. Imagine that a web-

based group-study app GS exports a Java method, which accesses

app user’s calendar, to JavaScript interface using the JJB mecha-

nism. When the user uses the app GS to visit some web content on

the app’s corresponding web domain (i.e., studytogether.com),
the web content requests to read/write user’s calendar. Then the

ReACt system intercepts such a request, and asks the user whether

to grant such access to the said web content. On positive answer,

the following AC rule is automatically generated and applied to the

current and future requests.

calendar − web:studytogether.com − read write

Example 2: system resource exposed by H5A. Continuing the example

1, while browsing the web domain studytogether.com in the app

GS, the user accidentally clicks an ad link, which leads to another

web domain olinegamead.net. This web domain calls the HTML5

API to request the user device’s GPS location. A properly devel-

oped GS app would handle the HTML5 API call and ask the user if

the location request should be granted. However, the GS app may

not implement or illy implemented such an AC logic (recall that

handling similar AC is cumbersome and error-prone [35]). With

ReACt, the request to access GPS location is automatically inter-

cepted, and the user’s consent is asked for the request. Suppose

that the user does not want to reveal her location to the web do-

main onlinegamead.net, the following AC rule is generated and

applied.

gps − web:onlinegamead.net − none

Example 3: system resource exposed by FUS. Another example is

that a simple calculator app sends an intent to another app V to

obtain, via the FUS mechanism, device location to which app V has

the permission. The ReACt system is able to intercept the location

access attempt and identify the source of the attempt (which is the

calculator app), and prompts the user about it. If the user chooses

to deny, the following AC rule is generated and applied.

gps − app:com.simple.calculator − none

3.5.2 ACpolicy establishment for app-defined resource. AC
policies for app-defined resource is established by app developers,
because app developers know the best about whether and how

these resources should be protected. These AC policies are stored

in regular files which are read by ReACt runtime to be populated

into ReACt’s AC policy DB (details later in §4).

Example 4: app-defined resource exposed by JJB. In the example

shown in Listing 1 previously, user SSN number is an app-defined

resource and the method GetUsrSSN()) is defined to allow external

web code obtain such an resource. If the app developer wants only

her web domain (i.e., mydomain.com) can obtain user SSN by calling

the method, she can define the AC rules in the listing below.

1 Listing.One.App:AppMngtWebIntf:GetUsrSSN() − web:
mydomain.com − call

2 Listing.One.App:AppMngtWebIntf:GetUsrSSN() − !{web:
mydomain.com} − none

3.5.3 AC policy establishment for WebView resource. AC
policies for WebView resource is also established by app develop-
ers. This is because the app developers have the best knowledge

about who should (or should not) be using their apps’ WebView

instances for displaying web contents.

Example 5: WebView resource exposed by MDL. In the example shown

in Figure 2 (which illustrates the MDL-related attack), to prevent her
app from being exploited to display unwanted web content, the app

developer can define an AC rule in the below listing for her app’s

WebView such that the WebView only loads content from her own

web domain (i.e., mydomain.com).

1 webview@Figure.Two.Deputy.App − web:mydomain.com −

call
2 webview@Figure.Two.Deputy.App − !{web:mydomain.com} −

none

3.5.4 AC policy establishment for EH resource. AC policies

forweb event hook (EH) resource is established bywebdevelopers,
because web developers have the knowledge of which apps can or

should not track events when displaying their content. Similar to

AC policies established by app developers, these AC policies are

also stored in regular files and are populated to ReACt’s AC policy

DB during runtime.

Example 6: EH resource exposed by WEH. Suppose a web developer

develops web content for mydomain.com. She can define the two

rules shown in the listing below if she wants only the app with

package name My.Domain.App can track the events happening

while the app is displaying the web content.

1 web:mydomain.com + ∗ − app:My.Domain.App − call
2 web:mydomain.com + ∗ − !{app:My.Domain.App} − none

4 SYSTEM IMPLEMENTATION
We have implemented a prototype ReACt system on Android AOSP

7.0.1. Although the implementation is based onAndroid, the resource-

centric idea to coherently address the AC problem for different WAI

mechanisms is applicable to other mobile OSes.

There are two main goals for our ReACt system implementation.

First, the prototype system should be compatible with installed apps

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xin Zhang and Yifan Zhang

5H$&W�
PDQDJHU�

�DSS�

%URNHUHG�H[HFXWLRQ�HQYLURQPHQW��%((�

$&�SROLF\
HQIRUFHU

$&�SROLF\
'%

5XQWLPH�$&�
SROLF\�JHQHUDWRU

6\VWHP���DSS�GHÀQHG���:HE9LHZ���(+
UHVRXUFHV

$SS�ZLWK�:HE9LHZ
�XQPRGLÀHG�

���$SS�ZLWK�:HE9LHZ
�XQPRGLÀHG�

$

&

�

$FWRU8VHU

$SS�ZHE
GHYHORSHU

�

�

%�$ 8VHU�SURPSW���IHHGEDFN

% SROLF\�XSGDWH&

� 5HVRXUFH�DFFHVV�UHTXHVW
� 5HVRXUFH�W\SH���FRQVXPHU
� $&�SROLF\�ORRNXS
� *UDQWHG�DFFHVV�UHTXHVW

Figure 4: ReACt runtime system overview.

and existing Android OS, meaning it should not require modifica-

tion, compilation or installation of apps and the Android OS. Sec-
ond, the implementation should correctly reflect ReACt’s resource-
centric design discussed previously. The following discussion of

the system implementation is centered around how we achieved

these two goals.

4.1 Overview of the ReACt runtime system
The core component of our system is the ReACt manager, a regular

Android app which does the following operations. (1) ReACt man-

ager provides a brokered execution environment (BEE) for running

unmodified android apps. Here “brokered” means all interactions

between the unmodified apps and the Android system, such as

system service requests and resource requests, are routed to the

BEE such that the ReACt manager can execute the resource AC

control design described previously. (2) ReACt manager performs

the resource AC based on resource type/consumer and AC policies.

(3) ReACt manager generates AC policies based on user feedback

during runtime. Figure 4 shows an overview of our ReACt pro-
totype system. In the system, unmodified apps which are under

ReACt system’s monitoring interact with the four types of resource

(i.e., system resource, app-defined resource, appWebView instances,

web event hooks (EH)) through the BEE of which the details are

deferred later (step 1 in Figure 4). For each resource access request,

the BEE identifies the type of resource being requested and its con-

sumer, which are passed to the AC policy enforcer and the runtime

AC policy generator (step 2). In case that the resource being re-

quested is system resource and there is no AC policy regulating

whether the consumer can access the resource, the AC policy gen-

erator asks for user’s preference (step A), generates a new policy

accordingly, and adds it to the AC policy DB (step B). The above

two steps are not needed if the resource being requested is not sys-

tem resource because the AC policies for non-system resource are

provided by app/web developers (step C). The AC policy enforcer

consults the AC policy DB to determine whether the request should

be granted (3). On a positive decision, the ReACt manager requests

the resource and returns it to the unmodified app (step 4).

We highlight three aspects in the above design. First, the BEE
provided by the ReACt manager is able to launch unmodified apps

and redirect all the resource access requests through it. Second, the
implementation of the BEE does not require modifying Android

framework or the Linux kernel. Third, the AC policy DB works as

an external DB to both the ReACt manager and the Android OS.

Therefore, AC policies in our system can be updated dynamically.

/LQX[�
NHUQHO %LQGHU�GULYHU

6\VWHP�VHUYHU
���

%LQGHU¬UHFHLYHU

/RFDWLRQ0DQDJHU
6HUYLFH

%LQGHU¬UHFHLYHU

$FWLYLW\0DQDJHU
VHUYLFH

��

$SS�$
�XQPRGLÀHG�

6RXUFH
ELQGHU

/RFDWLRQ0DQDJHU

¬6RXUFH�
ELQGHU

$FWLYLW\0DQDJHU

���

3URFHVV�ERXQGDU\

Figure 5: App-to-system-service comm. via binder in Android.

4.2 The brokered execution environment (BEE)
The main goal of the BEE is to intercept resource access requests for

the four types of resource made by the unmodified apps which are

under ReACt system’s monitoring. We adopted a strategy similar

to the Boxify app virtualization approach [7] in enabling the BEE:

redirecting the communications between the protected apps and

the Android system, such as system resource access and intent

passing, through an environment which is under our control, such

that those communications can be monitored as needed. The key

technique to realize this strategy is Android binder replacement,

which is described next.

4.2.1 Android binder replacement. The system resources con-

cerned in this paper are provided by different Android system ser-

vices. When an app is started, Android system creates local instances
of different system services such that the app can request certain sys-

tem service through the corresponding local instance of the service.

Most system services are running as individual threads with the

System Server process. The mechanism that connects an app’s local

instances of system services and their counterparts in the System

Server process is binder, which is a form of inter-process commu-

nication (IPC) mechanism in Android. Figure 5 shows an example

of how an app A communicates with the ActivityManager Ser-

vice using binder. The app A’s local instance of ActivityManager
has a “source binder” through which the app can send intents (i.e.,

a form of message in Android) to the ActivityManager Service

which receives intents from apps through a “binder receiver”. The

communication from the source binder to the binder receiver is

facilitated by the binder driver located in the Linux kernel.

To allow the ReACt manager to intercept system resource access

requests from mobile apps, the binder replacement technique re-

places the source binders in the local instances of system services

with different ones, such that the replaced source binder would send

requests to the ReACt manager app instead of the actual system

services. Figure 6 demonstrate an example of the above process:

the source binder in app A’s ActivityManager local instance is

replaced with one which would communicate with the binder re-

ceiver for the ActivityManagerwithin the ReACt manager app. As

a result, all ActivityManager-related resource requests sent from

app A will be intercepted by the ReACt manager, which grant the

requests only if they pass the AC policies.

In our implementation, the replacement of source binder does

not require modifications to the app because we use Java reflection,

which is a way of examining or modifying the behavior of Java

methods, classes, interfaces at runtime without the source code, to

ReACt : A Resource-centric Access Control System for Web-app Interactions on Android WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

/LQX[�
NHUQHO %LQGHU�GULYHU

5H$&W�PDQDJHU��DSS�

$0�ELQGHU
UHFHLYHU¬¬6RXUFH�ELQGHU

$FWLYLW\0DQDJHU

/0�ELQGHU
UHFHLYHU¬¬6RXUFH�ELQGHU

/RFDWLRQ0DQDJHU

�������

�

�

�

3URFHVV�ERXQGDU\

$SS�$
�XQPRGLÀHG�

5HSODFHG
VRXUFH�ELQGHU

/RFDWLRQ0DQDJHU

5HSODFHG
VRXUFH�ELQGHU

$FWLYLW\0DQDJHU

���

6\VWHP�VHUYHU

���

%LQGHU¬UHFHLYHU

/RFDWLRQ0DQDJHU
6HUYLFH

%LQGHU¬UHFHLYHU

$FWLYLW\0DQDJHU
6HUYLFH

��

Figure 6: ReACt manager app intercepts binder-based app-to-
system-service communication using binder replacement.

replace the original source binders with ours. To obtain the original

source binder objects, our operations are different based on whether

a local static binder object is available. For system services which

use static references for source binders in local instances, such

as ActivityManager service and NotificationManager service,

we use Java reflection to directly replace the source binders. For

the remaining services, such as LocationManager which don’t

have such local static binder reference, we obtain the reference to

the source binders by calling ServiceManager.getService() to
get the corresponding binder interface, which is stored in a static

hashmap called sCache inside the ServiceManager local instance,

while applying Java reflection.

The Android binder replacement approach is useful to ReACt run-
time system not only because it helps to redirect system resource

requests to ReACt manager without changing app/OS, but also be-

cause it is able to intercept intent sending (by replacing binders in

ActivityManager) such that we can identify resource consumers

in FUS and MDL mechanisms (details later).

4.2.2 ART hooking. Android Runtime(ART) is the runtime used

by apps in Android 5.0 and later. The ART hooking technique gets

Java method’s native representation inside ART and modify ART’s

internals to change a Java method’s behaviour.

We used ART hooking to intercept app-defined resources, which

are represented by the corresponding get/set Java methods, and

web event hooks resources, which are essentially Java methods. Due

to the space limit, we skip the implementation details regarding

ART hooking, which are largely introduced in work [11].

4.2.3 Setting up the BEE (i.e., ReACtmanager launching un-
modified apps). We set up the BEE and launch unmodified apps in

the following way. All apps under monitoring are launched through

the ReACt manager. The ReACt manager carries the code of resource

access monitoring and AC enforcement, which is to be injected

into the runtime environment of the unmodified apps using either

Android binder replacement or ART hooking. To properly launch

an unmodified app A with the ReACt manager, the app is started,

bound to and running in an empty Activity of ReACt manager.

We redirect app A’s ActivityManager-related requests to the Re-
ACt manager using binder replacement as introduced previously.

The ReACt manager manages all app A’s ActivityManager-related
requests on behalf of the app. The code of the new functionalities

(i.e., code for resource access monitoring and AC enforcement) is

carried in the Application class of the ReACt manager. The new

empty Activity, in which the app A is running, shares the same

Application class with the ReACt manager. As a result, we use

process IDs inside the Application class to determine the correct

running context (i.e., the ReACt manager’s context or the app A’s
context). Once the app A is started, we use the binder replacement

approach to monitor app A’s other system service requests using

binder replacement, and use the ART hooking approach to intercept

invocations of app-defined resource and web event hooks.

4.3 Implementing the resource-centric design
The resource AC workflow for each of the five WAI mechanisms

consists of two important steps: resource type identification and

resource consumer identification, which we described as follows.

4.3.1 Resource type identification. For system resource, we can
identify the specific type using the binder replacement approach

introduced previously (because all system resource accesses are

done through certain Android System Services). Our current imple-

mentation supports four types of system resource: device location,

phone number, contact list, and calendar. Device location is ob-

tained through the LocationManager service. Phone number is

obtained through the TelephonyManager service. Contact list and

calendar are obtained from the corresponding Content Providers

each of which are associated with their own Activity, and Activ-

ity is managed through the ActivityManager service. Therefore,
we can know what specific type of resource is being accessed by

checking which binder receiver was used when receiving intents

in the ReACt manager.

For app-defined resource, which is represented by the get/set
methods defined by app developers, we can know what specific

resource is accessed by looking at what customized Java method,

which was hooked on using the ART hooking technique.

For WebView resource, it is used in MDL related attacks where

attackers request certain apps to use their WebView instances to

display attack contents by embedding mobile deep links in intents.

Therefore, we can know if certain apps’ WebView instances are

about to be exploited by monitoring intent communication, which

is achieved by replacing ActivityManager-related binders.

For web event hook resource, similar to app-defined resource, we

can know what specific web event hooks, which are essentially

Java methods, are being utilized by checking which hook method

is being invoked.

4.3.2 Resource consumer identification. There are two types

of resource consumers: web consumer and app consumer. The iden-
tity of web consumer, which is represented by the origin of web

content, is obtained by instrumenting the Android systemWebView

app, which can be changed, compiled and installed like regular An-

droid apps. The Android system WebView app provides the web

engine support for WebView instances in different apps. By in-

strumenting the Android system WebView app, we can identify

the origins of different web users. We adopt two approaches of

instrumenting the Android system WebView app to identify web

consumers. (1) The thread ID based approach. This approach is based
on the observation that resource accesses with the JJB mechanism

takes place in Chromium’s background thread, in which no other

background resource access would happen. Therefore, we use the

ID of the thread in which a resource access happens to decide if

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xin Zhang and Yifan Zhang

the access is caused by a JJBWAI. (2) The mark-and-check-later ap-
proach. This approach is suitable for a WAI mechanism if resource

accessed needs to be returned via the interaction initiating point.

For example, in an H5AWAI, resources accessed by the HTML5 APIs

will be returned through Chromium’s renderer thread which is also

the starting point of the WAI. Therefore, we can mark the access

with its resource type in the access-monitoring phase, and enforce

the AC policies when the resource is returned to the renderer thread

where the resource consumer is identified.

The identify of app consumer is relatively straightforward: it

can be obtained through intent passing monitoring as described

previously.

5 DISCUSSION AND LIMITATIONS
Comparison to Android permission system. Similar to An-

droid permission system, ReACt provides AC for system resources.

It is noteworthy that the difference between our resource AC and

the AC by Android’s permission system is that Android permissions

deal with system resource requests from individual apps, whereas

in our case the consumers of resources are web domains or apps

that are different from the apps making the access request. Also,

Android permissions cannot protect other forms of resource, such

as app-defined resource, WebView resource, and EH resource.

The brokered execution environment (BEE) and the ReACt
manager. BEE allows for monitoring and interception of communi-

cations between the protected apps and the Android systemwithout

modifying apps or the OS. In our prototype system, the BEE is pro-

vided by the ReACt manager app. It is worth noting that although

(unmodified) protected apps are launched by the ReACt manager,

they are not running inside the ReACt manager’s context. Instead,

individual protected apps run in their own processes, whose com-

munication with the Android system are redirected through the

ReACt manager app. Therefore, the process-level app isolation in

Android is retained with our prototype system. However, we do

need to trust the ReACt manager appwhich oversees all the resource

accesses related to the protected apps.

Limitations. The advantage of requiring no app/OS modification

by our prototype system is at the cost of the following limitations.

First, since intent passing that involves protected apps goes through
the ReACt manager, communication between non-protected apps

(which are not launched by the ReACt manager) and the protected

apps is not possible. Second, normal Android user experience is

broken with our prototype system because all the protected apps

need to be launched via the ReACt manager rather than the An-

droid launcher. Third, the binder replacement approach introduces

overhead (albeit small, details next). To address these limitations,

we could implement the proposed resource-centric design as part

of the Android OS.

6 SYSTEM EVALUATION
System Effectiveness. To evaluate the effectiveness of ReACt sys-
tem, we use five commercial apps which expose JJB interfaces:

WPS, CVS, Twitter, Walmart and TikTok. We developed web code

to take advantage of the interfaces and check if our ReACt system
can capture the wanted accesses. we also developed several apps

each of which takes advantage of an individual WAI mechanism

Table 4: Web content loading time overhead

WAI mechanism Overhead in milliseconds Overhead in pert.

JJB 2.8 6.2%

H5A 4.6 7.2%

FUS 18.3 6.7%

MDL 8.4 3.1%

to acquire private user and device information, and ran them with

our ReACt prototype system. The experiment results show that

our ReACt system can accurately detect resource accesses which

violated the AC policies in all the cases.

Meanwhile, since our solution relies on intercepting and examin-

ing system level operations, it is expected to introduce some amount

of overhead. Therefore, in the following, we focus on the overhead

caused by the ReACt system. All the experiments were carried out

using a Google Nexus 5 smartphone running the Android AOSP

7.0.1 OS.

Web content loading time. We first evaluated the overhead for

web content loading time. We developed our own test app which

employed the WAI mechanisms so that we can instrument the app

to accurately measure the web page loading performance with and

without ReACt. Specifically, our test app uses WebView to load web

pages, and it also has Activities for resolving incoming intents. The

test app has all the necessary permissions of the device’s resources

to trigger each WAI mechanism. In addition to the test app, we

also developed different web code for triggering different WAI

mechanisms:

− For JJB, we implemented a Java method which requests the

device’s geolocation, and then expose this method through the

JJB mechanism.

− For H5A, the web code calls the HTML5 Geolocation APIs to get

the devices location information.

− For FUS, we used another app to send an intent containing a file
scheme URL, which points to an HTML file on the device’s local

storage, to the test app, which parses the intent and loads the local

HTML file specified in the intent. This local HTML file contains

the code to read a private file of the test app to simulate the attack

which exploits the FUS mechanism.

− For MDL, we also used another app to send an intent to the test

app. The intent contains a deep link which is to request one of the

test app’s WebView instances to load a web page.

The web content loading time for different WAI mechanisms

were measured as follows. For JJB and H5A, the loading time was

calculated as the time between the occurrence of WebView event

onPageStarted() and the event onPageFinished(). For FUS and

MDL, the loading time was the time between the invocation of

startActivity() to the intent and the occurrence of the Web-

view event onPageFinished().
In each experiment, to eliminate the impact of network trans-

mission time fluctuation, the web code is located in a local HTML

file instead. Each of the page loading experiments was repeated

200 times, and the average values are reported. Table 4 shows the

web content loading overhead in both milliseconds and percent-

age for each mechanism. The percentage value is calculated as

(Tw−Two)×100
Two

%, where Tw and Two are the loading times with and

without ReACt enabled respectively. From the result we can see that,

ReACt : A Resource-centric Access Control System for Web-app Interactions on Android WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

W P S C V S T w i t t e r W a l m a r t T i k T o k

0

2

4

6
 O r i g i n a l
 R e A C t - c o l d s t a r t
 R e A C t - w a r m s t a r t

Ap
p s

tar
tup

 tim
e (

s)

 Figure 7: Application startup time

in the cases of JJB, H5A, FUS, and MDL, ReACt only introduced less

than 20 ms of additional time to load the web content, which was

unnoticeable. Considering that WAI is usually not a high frequency

event, the loading time overhead is essentially negligible.

Mobile app startup time. With ReACt, protected apps are started
through the ReACt manager app instead of the Android launcher.

Therefore, we also evaluated how our system would introduce

overhead to the app startup process. In this experiment, we selected

WPS, CVS, Twitter, Walmart and Tiktok for our evaluation. Each

of these apps is within the most popular apps, which make use of

WebView, from their own categories (i.e., business, health, social,

shopping and photography) in Google Play. We define app startup

time as the time from the user click the icon from the Android

Launcher or from our ReACt manager to the time that the app

is started. For ReACt, we also define the startup of a protected

app P as “cold start” if it is the first time that P is loaded by the

ReACt manager app since the manager was launched; otherwise the

startup of P is defined as “warm start”. We repeated this experiment

for different apps for 20 times and report the average value here.

Figure 7 shows the experiment result. From the result we can see

that ReACt caused around half a second to one second more time,

which is an acceptable amount of overhead, to start each of the five

apps if it was the first time for the ReACt manager to start the app

(i.e. cold start). Interestingly, if a protected app P was started by

the ReACt manager before, it would take much less time for the

ReACt manager to start Pagain (i.e., warm start). For all the cases

the warm start time with ReACt is even smaller than that of using

the original Android launcher. The reason is that with our imple-

mentation, the ReACt manager still keeps some data structure for a

protected app after the app is closed. For example, each protected

app is running in a child process of the ReACt manager. Our cur-

rent implementation does not terminate the hosting process after a

protected app exists. Therefore, when the same app is started next

time, some time can be saved due to reuse of the process. Given the

above observations, we are currently planning an optimization on

ReACt manager, which is to flush out cached data structures only

when an app is not frequently used. This way, we will be able to

strike a good balance between app startup time and memory usage.

Overhead onnormal resource accesses. Since our solution needs
to impose on sensitive resource accesses, some overhead is expected

to caused for normal resource accesses, such as those triggered by

explicit user operations. To quantify this overhead, we performed

experiments to measure the invocation times of Android framework

APIs, such as getLastKnownLocation() of the LocationManager
class and getAccounts() of the AccountManager class, with and

without ReACt enabled. The result shows us that ReACt usually
caused 10% to 25% of overhead depending on the complexity of

the APIs (APIs requesting more system services suffer a higher

percentage of overhead). Considering the invocations of Android

APIs are usually very fast (e.g., less than 100 ms), the overhead

caused by ReACt is negligible.

7 CONCLUSION
We comprehensively examined five WAI mechanisms on Android.

We presented ReACt, a resource AC system for suchmechanisms. Re-
ACt adopts a novel resource-centric design such that it can provide

fine-grained resource AC protection for all the five WAI mecha-

nisms in a unified way, which is not possible with the existing

solutions. We implemented a prototype ReACt system and evalu-

ated it with real-world experiments. The evaluation results show

that our system achieves the design goals with little overhead.

ACKNOWLEDGMENT
We thank the anonymous reviewers for their tremendously valuable

feedback. This work was supported in part by NSF Award #1566375.

REFERENCES
[1] Alexandre Jubien. Use deep linking as a powerful acquisition and retention

channel. https://www.apptamin.com/blog/mobile-deep-linking/.

[2] Andrew Lee-Thorp. Android WebViews and the JavaScript to Java

Bridge. https://www.synopsys.com/blogs/software-security/android-webviews-

and-javascript-to-java-bridge/.

[3] Android Developers. Building Web Apps in WebView. https://developer.

android.com/guide/webapps/webview.html.

[4] Android Guru. Binding JavaScript and Android Code: an Exam-

ple. http://programmerguru.com/android-tutorial/binding-javascript-and-

android-code-example/.

[5] Apple Developer Documentation. UIWebView - UIKit. https://developer.apple.

com/documentation/uikit/uiwebview.

[6] Azim, T., Riva, O., and Nath, S. ulink: Enabling user-defined deep linking to

app content. In ACM MobiSys (2016).
[7] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and von Styp-Rekowsky,

P. Boxify: Full-fledged app sandboxing for stock android. In USENIX Security
Symposium (2015).

[8] Chin, E., Felt, A. P., Greenwood, K., and Wagner, D. Analyzing inter-

application communication in android. In ACM MobiSys (2011).
[9] Chin, E., andWagner, D. Bifocals: Analyzing webview vulnerabilities in android

applications. In International Workshop on Information Security Applications
(WISA) (2013).

[10] chromium.org. The Chromium Projects. http://www.chromium.org/Home.

[11] Costamagna, V., and Zheng, C. Artdroid: A virtual-method hooking framework

on android ART runtime. In International Workshop on Innovations in Mobile
Privacy and Security (IMPS) (2016).

[12] DanKosir. 7 Key Benefits ofMobile AppDeep Linking. https://clearbridgemobile.

com/7-benefits-of-mobile-app-deep-linking/.

[13] Davidson, D., Chen, Y., George, F., Lu, L., and Jha, S. Secure integration of

web content and applications on commodity mobile operating systems. In ACM
AsiaCCS (2017).

[14] Dhar, S., and Varshney, U. Challenges and business models for mobile location-

based services and advertising. Communications of the ACM 54, 5 (2011), 121–128.
[15] Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S., and Chin, E. Permission

re-delegation: Attacks and defenses. In USENIX Security Symposium (2011).

[16] Frumusanu, A. A Closer Look at Android RunTime (ART) in Android

L. AnandTech: http://www.anandtech.com/show/8231/a-closer-look-at-android-
runtime-art-in-android-l/ (2014).

[17] Georgiev, M., Jana, S., and Shmatikov, V. Breaking and fixing origin-based

access control in hybrid web/mobile application frameworks. In NDSS (2014).
[18] Georgiev, M., Jana, S., and Shmatikov, V. Rethinking security of web-based

system applications. In WWW (2015).

https://www.apptamin.com/blog/mobile-deep-linking/
https://www.synopsys.com/blogs/software-security/android-webviews-and-javascript-to-java-bridge/
https://www.synopsys.com/blogs/software-security/android-webviews-and-javascript-to-java-bridge/
https://developer.android.com/guide/webapps/webview.html
https://developer.android.com/guide/webapps/webview.html
http://programmerguru.com/android-tutorial/binding-javascript-and-android-code-example/
http://programmerguru.com/android-tutorial/binding-javascript-and-android-code-example/
https://developer.apple.com/documentation/uikit/uiwebview
https://developer.apple.com/documentation/uikit/uiwebview
http://www.chromium.org/Home
https://clearbridgemobile.com/7-benefits-of-mobile-app-deep-linking/
https://clearbridgemobile.com/7-benefits-of-mobile-app-deep-linking/
http://www.anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/
http://www.anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Xin Zhang and Yifan Zhang

[19] Google Developers. Android WebSettings. https://developer.android.com/

reference/android/webkit/WebSettings.

[20] Greg Sterling. Nielsen: More Time On Internet Through Smartphones Than

PCs. http://marketingland.com/nielsen-time-accessing-internet-smartphones-

pcs-73683.

[21] Internet Engineering Task Force (IETF). RFC6454: The Web Origin Concept.

https://tools.ietf.org/html/rfc6454.

[22] Jiang, X., and Zhou, Y. Dissecting android malware: Characterization and

evolution. In IEEE Symposium on Security and Privacy (2012).

[23] Jin, X., Hu, X., Ying, K., Du, W., Yin, H., and Peri, G. N. Code injection attacks

on html5-based mobile apps: Characterization, detection and mitigation. In ACM
CCS (2014).

[24] Jin, X., Wang, L., Luo, T., and Du,W. Fine-grained access control for html5-based

mobile applications in android. In Information Security Conference (ISC) (2013).
[25] Li, T., Wang, X., Zha, M., Chen, K., Wang, X., Xing, L., Bai, X., Zhang, N.,

and Han, X. Unleashing the walking dead: Understanding cross-app remote

infections on mobile webviews. In ACM CCS (2017).
[26] Liu, F., Wang, C., Pico, A., Yao, D., and Wang, G. Measuring the insecurity of

mobile deep links of android. In USENIX Security Symposium (2017).

[27] Luo, T., Hao, H., Du, W., Wang, Y., and Yin, H. Attacks on webview in the

android system. In ACM ACSAC (2011).

[28] Ma, Y., Liu, X., Hu, Z., Liu, Y., and Xie, T. Aladdin: Automating release of

deep-link api on android. In WWW (2018).

[29] MicrosoftDocs. Web view - UWP app developer. https://docs.microsoft.com/en-

us/windows/uwp/controls-and-patterns/web-view.

[30] Phung, P. H., Mohanty, A., Rachapalli, R., and Sridhar, M. Hybridguard: A

principal-based permission and fine-grained policy enforcement framework for

web-based mobile applications. In IEEE Security and Privacy Workshops - Mobile
Security Technologies (MoST) (2017).

[31] Rizzo, C., Cavallaro, L., and Kinder, J. Babelview: Evaluating the impact of

code injection attacks in mobile webviews. arXiv preprint arXiv:1709.05690 (2017).

[32] Ruadhan O’Donoghue. HTML5 for the Mobile Web - a guide to the Geolocation

API. https://mobiforge.com/design-development/html5-mobile-web-a-guide-

geolocation-api.

[33] TheGuardian. Smartphone nowmost popular way to browse internet: an Ofcom

report. https://www.theguardian.com/technology/2015/aug/06/smartphones-

most-popular-way-to-browse-internet-ofcom.

[34] TRUSTLOOK. Android WebView Class Poses Significant Security Risk.

https://blog.trustlook.com/2018/01/19/android-webview-class-poses-

significant-security-risk/.

[35] Tuncay, G. S., Demetriou, S., and Gunter, C. A. Draco: A system for uniform

and fine-grained access control for web code on android. In ACM CCS (2016).
[36] Wang, R., Xing, L., Wang, X., and Chen, S. Unauthorized origin crossing on

mobile platforms: Threats and mitigation. In ACM CCS (2013).
[37] Wikipedia. Backus-Naur form. https://en.wikipedia.org/wiki/Backus%E2%80%

93Naur_form.

[38] Wikipedia. Mobile deep linking. https://en.wikipedia.org/wiki/Mobile_deep_

linking.

[39] World Wide Web Consortium (W3C). File API: Directories and System. https:

//dev.w3.org/2009/dap/file-system/file-dir-sys.html.

[40] World Wide Web Consortium (W3C). Geolocation API Specification. https:

//w3c.github.io/geolocation-api/.

[41] World Wide Web Consortium (W3C). HTML5 compatibility on mobile and

tablet browsers with testing on real devices. http://mobilehtml5.org/.

[42] World Wide Web Consortium (W3C). Media Capture and Streams API. https:

//w3c.github.io/mediacapture-main/getusermedia.html.

[43] Wu, D., and Chang, R. K. Analyzing android browser apps for file:// vulnerabili-

ties. In Information Security Conference (ISC) (2014).
[44] Yoni Heisler. Mobile devices become most popular way to access inter-

net. http://nypost.com/2016/11/03/mobile-devices-become-most-popular-way-

to-access-internet/.

https://developer.android.com/reference/android/webkit/WebSettings
https://developer.android.com/reference/android/webkit/WebSettings
http://marketingland.com/nielsen-time-accessing-internet-smartphones-pcs-73683
http://marketingland.com/nielsen-time-accessing-internet-smartphones-pcs-73683
https://tools.ietf.org/html/rfc6454
https://docs.microsoft.com/en-us/windows/uwp/controls-and-patterns/web-view
https://docs.microsoft.com/en-us/windows/uwp/controls-and-patterns/web-view
https://mobiforge.com/design-development/html5-mobile-web-a-guide-geolocation-api
https://mobiforge.com/design-development/html5-mobile-web-a-guide-geolocation-api
https://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom
https://www.theguardian.com/technology/2015/aug/06/smartphones-most-popular-way-to-browse-internet-ofcom
https://blog.trustlook.com/2018/01/19/android-webview-class-poses-significant-security-risk/
https://blog.trustlook.com/2018/01/19/android-webview-class-poses-significant-security-risk/
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Mobile_deep_linking
https://en.wikipedia.org/wiki/Mobile_deep_linking
https://dev.w3.org/2009/dap/file-system/file-dir-sys.html
https://dev.w3.org/2009/dap/file-system/file-dir-sys.html
https://w3c.github.io/geolocation-api/
https://w3c.github.io/geolocation-api/
http://mobilehtml5.org/
https://w3c.github.io/mediacapture-main/getusermedia.html
https://w3c.github.io/mediacapture-main/getusermedia.html
http://nypost.com/2016/11/03/mobile-devices-become-most-popular-way-to-access-internet/
http://nypost.com/2016/11/03/mobile-devices-become-most-popular-way-to-access-internet/

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Background
	2.2 Related work: origin-centric & code-centric designs for WAI access control

	3 Solution design
	3.1 Adversary model
	3.2 Design goal
	3.3 ReACt: Resource-centric Access Control
	3.4 The resource-centric policy language (RCPL)
	3.5 Establishing AC policies and dealing with resource accesses in WAIs

	4 System implementation
	4.1 Overview of the ReACt runtime system
	4.2 The brokered execution environment (BEE)
	4.3 Implementing the resource-centric design

	5 Discussion and limitations
	6 System evaluation
	7 Conclusion
	References

