
Improving Cloud Storage Usage
Experience for Mobile Applications

Yongshu Bai Xin Zhang Yifan Zhang
Binghamton University, Binghamton, New York
{ybai4, xzhang99, zhangy}@binghamton.edu

Abstract
Cloud storage services are becoming increasingly popular
in mobile apps. Through comprehensive real app studies,
we reveal that many mobile apps making use of cloud stor-
age services provide poor usage experience, such as unnec-
essary energy consumption, extended synchronization re-
sponse time, and redundant network traffic. The root cause
of these problems stems from the way that current commer-
cial cloud storage providers choose to deploy their services
to mobile platforms: in order to have fast and easy deploy-
ment, they totally avoid client-side system-level file opera-
tion monitoring and servicing, which has been an essential
part of the successfulness of traditional distributed file sys-
tems, and leave the implementation of the important client-
side operations like caching, consistency assurance totally to
mobile app developers. We propose StoArranger, a user-
space system-wide service aiming to improve cloud storage
usage experience for exiting mobile applications. We briefly
present the design, the associated challenges, and our on-
going implementation of StoArranger.

1. Introduction
Personal cloud storage services, such as Dropbox [17],
Google Drive [18] and OneDrive [26], have been gaining
fast-increasing popularity in recent years [15, 16, 25]. Mean-
while, as smartphones and tablets are becoming more pow-
erful and prevalent, we are seeing the same trend of cloud
storage services gaining popularity on mobile devices.

The general problem of efficient, secure and scalable ac-
cess to cloud-sourced data over networks of limited band-
width and reliability has been the subject of distributed file
systems research over the past three decades. During the
couse, many effective solutions and useful insights have

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org.

APSys 2016, August 4–5, 2016, Hong Kong, China.
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4265-0/16/08. . . $15.00
DOI: http://dx.doi.org/10.1145/2967360.2967378

been developed, such as improving system scalability [19,
30], gracefully dealing with network failures and user mo-
bility [23, 31], improving network communication efficiency
[27], and ensuring data consistency [19, 23, 30, 31]. How-
ever, today’s commercial services for mobile access to cloud
storage have ignored some useful insights and practical ex-
perience of this multi-decade research. Most notably, they
choose to avoid client side OS-level monitoring and support,
in exchange for fast and easy service deployment. As the re-
sult of this implementation and deployment strategy, many
of the existing mobile apps fall short of using cloud stor-
age service efficiently, and thus leading to poor usage expe-
rience, such as unnecessary energy consumption, extended
folder synchronization time, and redundant network trans-
mission traffic. Here we summarize our findings as follows.
• First, many mobile apps generating user data (e.g., pho-
tos, videos, notes and documents) are using cloud storage
services for backing up the data. We find that these apps of-
ten perform cloud backups in an uncoordinated and energy-
agnostic way, causing unnecessary energy consumption.
This problem can be exacerbated when there are multiple
mobile apps performing cloud backups in the devices, which
is not uncommon in practice. We refer this problem as unco-
ordinated cloud backup by mobile apps (Section 3.1).
• Second, there are a growing number of mobile apps that
enable synchronization of folders across different mobile de-
vices by using cloud storage services. We find that most of
these apps fail to properly use cloud storage APIs to provide
good usage experience for users. We refer this problem as
inefficient cloud folder sync (Section 3.2).
• Third, many mobile apps dealing with user files, such as
file managers/browsers/editors, have been integrating in a
new feature that allows for access to files stored on the cloud.
We find that, most of these cloud file managers/editors ei-
ther do not implement caching (in which case the whole file
is downloaded every time when it is accessed) or provide
weak consistency with caching implemented. Most mobile
apps also do not implement metadata caching for cloud fold-
ers. We refer this problem as inefficient cloud file accesses by
mobile apps (Section 3.3).
• Fourth, we find that all the mobile apps we tested down-

load or upload the whole file from cloud storage even there
is only a single byte of change. We refer this problem as in-
efficient whole file transmission problem (Section 3.4).

The direct causes of the previous problems, as suggested
by our experimental results, are lack of cloud upload coordi-
nation by the device OS and errors or bad choices made by
the app developers due to carelessness or inexperience. The
deeper root cause is the choice made by commercial cloud
storage providers, for the purpose of easy and fast service
deployment, to avoid client-side system-level file operation
monitoring and servicing, which have been proved to be crit-
ical to the correct functioning of traditional distributed file
systems [19, 23, 27, 30, 31]. We will discuss this aspect in
more details in Section 2, and present our app studies show-
ing the outcomes of this choice in Section 3.

Motivated by our findings, we propose StoArranger,
a system that provides a system-wide support to intercept
and arrange (i.e., apply the correct logic to) the interaction
between mobile apps and cloud storage services. With our
design, the StoArranger device component runs as a user
level service, and requires no change to the mobile apps and
the underlying mobile OS. Therefore, StoArranger can ef-
fectively improve cloud storage usage experience for exist-
ing mobile applications. We will briefly present the design,
the associated challenges, and our on-going implementation
of StoArranger in Section 4.

2. Background: mobile data accessing and
cloud storage services on mobile devices

Client-side file operation awareness Common to many of
these exiting solutions, awareness of client-side file opera-
tions, which means the solutions need to be aware of the
occurrences of file operations, is essential for providing the
correct functionalities, For example, traditional distributed
file systems, such as AFS [19, 30], Coda [23, 31], LBFS
[27], need to know when a client opens a file (such that the
intended file can be fetched from the remote server or from
the local cache), and when the client closes the file (such
that the file can be written back). This knowledge is also es-
sential to implementing file caching and metadata caching,
which are important to system performance improvement.

Many well-known distributed file system solutions enable
their awareness of client-side file operations through inter-
posing on file system system calls or device drivers, and
achieve ideal system performances. For example, AFS [19,
30] intercepts file open and close system calls on the client
side and forward them to a client-side cache-management
process for processing. Coda [23, 31] inherited AFS’s client-
side design and added more functionalities to support dis-
connected operations and server replication. LBFS clients
[27] resort to interposing on XFS [11] device driver to ob-
tain notifications about file opens, closes and modifications,
and to achieve the content-based breakpoint chunking.
Cloud storage services on mobile devices Modern cloud
storage services are distributed file systems in nature. Com-

mercial cloud storage providers, however, adopt a way dif-
ferent from exiting distributed file system solutions to de-
ploy their services onto mobile devices. Unlike traditional
distributed file systems, which have their own client imple-
mentations including the file system call or device driver
interposition to enable client-side file operation awareness,
cloud storage services provide no client implementation. In-
stead, they usually provide development APIs [5, 6, 9] for
mobile apps to make use their services. These development
APIs are usually RESTful APIs[34] over HTTP. They al-
low apps to request or update resources (i.e., user files in
the case of cloud storage) on the servers by making HTTP
requests. For example, suppose a mobile app is managing a
folder on both the local device and the cloud. To synchronize
the folder (i.e. to make the folder content consistent on both
sides), the mobile app can call the API responsible for re-
trieving folder metadata on the intended folder. In response,
the server returns the folder entries and folder metadata. The
app then compares the metadata returned from the server and
that on the local device to decide if any entry in the folder
has been changed locally or remotely. If so, the app calls the
corresponding API to download/upload the changed file(s)
from/to the sever.

The adoption of RESTful APIs allows cloud storage
providers to deploy their services to third-party mobile apps
easily and quickly. The reason is that now the cloud storage
services do not need to provide the client implementation,
which is now left to app developers. However, this deploy-
ment choice causes three notable problems:
• Since these RESTful APIs do not contain any OS-level
mechanisms, such as system call/device driver interposition,
to enable client-side file operation awareness for the client
implementation, we are now totally relying on app develop-
ers to correctly implement the client logic, and to implement
those practices that are not necessary but extremely ben-
eficial, such as caching. As we will show later, poor cloud
storage usage experience in many mobile apps is due to care-
lessness and/or inexperience of app developers.
• Also, since there is no OS-level support about file opera-
tions on the client side, it is impossible to implement those
advanced techniques that require tight integration with the
OS, such as the content-based file chunking and incremental
data transmission [27].
• Lastly, because of the lack of client-side OS-level support
from the cloud storage providers, it is hard to implement
system-wide cloud storage requests coordination, which we
will later show is helpful to improve cloud storage usage
experience on mobile devices.

3. Inefficient cloud storage usage by mobile
apps

In this section, we present our mobile app studies aiming
to understand the inefficient cloud storage usage in current
mobile apps. Though the study was performed on Android

0
2 0
4 0
6 0
8 0

1 0 0

4 G3 G

No
rm

aliz
ed

ene
rgy

con

sum
pti

on
(%

)
N u m b e r o f b a t c h e s

 1 2 8 8
 6 4 4
 3 2 2
 1 6 1

W i F i
Figure 1. Energy consumption comparison for different
cloud backup request batching schedules.

apps from Google play, we believe that the findings are likely
to be applied to other major mobile platforms.

3.1 Uncoordinated cloud backups by mobile apps
Many mobile apps that deal with user content (e.g., photos,
videos, notes and documents) now offer user an option to
automatically back up files to a cloud storage chosen by the
user when file is generated or changed. The timing of these
backups are determined by the policies set by individual
apps. We surveyed 25 popular Android apps that perform
automatic photo/video cloud backup. Among these 25 apps,
18 back up new photo/video to the cloud immediately after
photo is taken or video is shot. These apps include those
very popular cloud storage service apps, such as Dropbox
and OneDrive, and social network apps, such as Flickr. Five
of the 25 apps wait a fixed amount of time (usually between 5
to 30 seconds), and then upload the newly generated content
to the cloud. Two apps perform photo/video backup at the
time when user quits from the camera app.

Form the above we can see that most automatic photo/video
backup apps upload the new content right after it is gener-
ated. This policy can lead to a substantial amount of en-
ergy waste due to accumulated promotion and tail energy
[12, 21] consumption. More specifically, to transmit data
when the wireless interface (e.g., WiFi, 3G or 4G) is idle,
certain amount of energy will be spent in bringing the inter-
face from idle state to active state (i.e., promotion energy).
After the data is is transmitted, before the interface goes back
to lower power idle state, it stays in high power state for a
fixed amount of time, during which the energy consumption
is called tail energy. Both Promotion and tail energy con-
sumption do not contribute to the actual data transmission.
If an app uploads new photos at the times immediately af-
ter each of them is take, it’s likely that every photo upload
suffers from promotion/tail energy waste.

An approach to solve the above energy waste problem
is to schedule the cloud upload requests from mobile apps,
such that multiple requests can be served in a single burst.
This way, the multiple sessions of promotion/tail energy
waste can be reduced to one. We conducted a simulation
experiment to study what extent this idea can save energy
consumption for cloud backups, when using WiFi, 3G and

4G as the wireless transmission method. In this experiment,
we assume a user takes 128 pictures along the day, each
picture is 1 MB in size. These photos are backed up to a
cloud storage in batches. The intervals between two uploads
are longer than wireless interface’s tail time (meaning each
upload has its own promotion/tail energy consumption). We
compared the cases of batch count being 128, 64, 32, 16, 8,
4, 2 and 1 (batch count of 128 meaning all the 128 photos
are uploaded individually, and batch count of 1 meaning all
the 128 photos are uploaded in one burst). The transmission
throughput of WiFi, 3G and 4G were set to 12 Mbps, 2
Mbps and 6 Mpbs respectively (which are the U.S. average
values to recent studies [1, 7]). We adopted the power models
presented in work [21] to calculate the energy consumption
of the transmissions, and compared the energy consumed per
byte of traffic for the cases of different batch count. Figure
1 shows the result of this experiment. We can see that the
batching approach saves a significant amount of energy for
the cellular cases (i.e., 4G and 3G). When using 4G/3G as
the wireless transmission method, uploading all the photo
in one batch saves about 70%/42% energy of the case of
uploading them individually. This number of the WiFi case
is 2%. This is because 4G and 3G both have longer tail time
and the higher tail power than WiFi.

From the above experiment we can see that coordinat-
ing cloud upload requests from mobile apps is promising in
saving network transmission energy consumption, especially
for the cellular cases. As cellular data becomes more afford-
able and unlimited data plan gains popularity, it is highly
worthwhile to investigate saving cloud backup energy for
cellular cases.

3.2 Inefficient cloud folder sync
Another useful functionality made possible by cloud storage
services is folder synchronization, where user can synchro-
nize a local folder (called sync folder) on the device with the
cloud. Any changes made to the sync folder will be auto-
matically synchronized to the cloud. With this functionality,
it is easy for a user to keep her data synchronized across the
multiple devices she owns.

Currently there is no major personal cloud storage ser-
vice provide official app to support folder sync on Android.
However, due to the usefulness of folder sync, many third-
party apps have been developed to provide Android users
with this functionality. For example, Autosync-Dropbox [2]
is an app providing folder sync for Dropbox users on An-
droid, and is now reaching 5 million installs on Google Play.
We believe these third-party folder sync apps using cloud
storage services will remain popular even after cloud stor-
age providers provide their official folder sync apps. This is
because third-party developers can provides all sorts of cus-
tomization wanted by users. For example, many folder-sync
app allow user to link to different cloud storage services in
just one app.

0 2 0 4 0 6 0 8 0 1 0 0
5

1 0
1 5
2 0
2 5
3 0
3 5

Sy
nc

tim
e (

sec
ond

)

F i l e c o u n t

 A S
 F S L
 S U
 S M E

0
5 0

1 0 0
1 5 0
2 0 0
2 5 0

3 l e v e l s
o f s u b f o l d e r

(2 7 s u b - f o l d e r s)
2 l e v e l s

o f s u b f o l d e r
(9 s u b - f o l d e r s)

Sy
nc

tim
e (

sec
ond

)

 A S
 F S L
 S U
 S M E

1 l e v e l
o f s u b f o l d e r

(3 s u b - f o l d e r s)
(b)(a)

Figure 2. Folder sync turnaround time: OneDrive. (a): fixed
sub-folder number; varied file count in each sub-folder. (b):
fixed file count in each sub-folder; varied sub-folder number.

The real app study We have performed an real app study to
understand how folder sync apps perform. In the following,
we explain several key points in this study:
• We tested 20 apps offering cloud folder sync. Here we
choose four popular ones to study in details: Autosync
(AS), FolderSync Lite (FSL), Synchronize Ultimate (SU) and
SME Cloud File Manager (SME), all of which support folder
sync using different cloud storage services (e.g., Dropbox,
Google Drive and OneDrive).
• Since cloud storage services all use HTTPS for transmis-
sion, we connect the test phone to Internet via a Charles
HTTP proxy [3], through which we could capture and ana-
lyze HTTPS traffic.
• We tested two cloud storage services: OneDrive and
Goolge Drive. We didn’t test Dropbox at network flow level,
because Dropbox has integrated SSL pinning [28] into its
third-party APIs, and thus does not recognize the proxy cer-
tificate even it is already installed on the phone.
• For folder sync performance metrics, we measured folder
sync turnaround time, which is the time duration of whole
sync, and folder sync traffic, which is total amount of traffic
generated during the sync.
• We wanted to examined how the number of files and the
number of sub-folders in the sync folders affect the sync
performance. To this end, we separated the test of each
app/cloud storage combination in to two parts. In the first
part, the sync folder contains 3 sub-folders, and the num-
ber of files in each sub-folder is chosen from 1, 5, 10, 20,
50, 100. In the second part, each leaf folder of the sync
folder contains just one file, and each non-leaf folder con-
tains three sub-folders. The number of sub-folder levels of
the sync folder is chosen from 1, 2 and 3, in which cases the
total sub-folders in the sync folder is 3, 9, and 27.
• Before each sync operation, the local folder is already
consistent with the cloud folder. The sync operation just
confirms local and cloud have already been consistent. No
file download/upload actually happened.
• Each app/cloud-storage-service/sync-folder-configuration
combination was repeated five times, and the average results
are reported here.

1 2 30
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

N u m b e r o f s u b - f o l d e r l e v e l s

 O r i g i n a l t r a f f i c R e d u n d a n t t r a f f i c
A S

Sy
nc

tra
ffic

 (K
B)

1 2 30
4 0
8 0

1 2 0
1 6 0
2 0 0 F S L

1 2 301 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0

S U

1 2 30
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0 S M E

1 0 2 0 5 0 1 0 00
1 0
2 0
3 0
4 0
5 0

Sy
nc

tra
ffic

 (K
B)

A S

1 0 2 0 5 0 1 0 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0

 O r i g i n a l t r a f f i c R e d u n d a n t t r a f f i c
F S L

1 0 2 0 5 0 1 0 002
04
06
08
01 0 0

1 2 0
1 4 0
1 6 0 S U

1 0 2 0 5 0 1 0 001 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

S M E

F i l e c o u n t
(b)(a)

Figure 3. Folder sync traffic: OneDrive. (a): fixed sub-
folder number; varied file count in each sub-folder. (b): fixed
file count in each sub-folder; varied sub-folder number.

We can have the following observation from Figure 2 and
Figure 3, which show the experiment result for OneDrive.
• (Figure 2 (a)) When the number of sub-folders is fixed, the
sync turnaround time of AS does not depend on the file count
in the sub-folders. It remains around 10 seconds as the file
count increases. For FSL and SME, the sync turnaround time
becomes longer (ranging from 5 seconds to 15 seconds) as
file count increases. SU has the same behavior as FSL and
SME, but has longer turnaround time (ranging from 18 sec-
onds to 33 seconds).
• (Figure 2 (b)) When increasing sub-folder number in the
sync folder, the sync turnaround time increases in a roughly
proportional way. When there are 3 levels of sub-folders in
the sync folder, the turnaround times of FSL/AS/SME/SU are
around 65/59/82/215 seconds, which are unacceptably long
given that there was no actual file download/upload.
• (Figure 3 (a)) When the number of sub-folders is fixed,
the sync traffic of all four apps increases as the file count in-
creases. But there is no fixed relationship between the two.
For example, the sync traffic of FSL and SME is more obvious
to be proportional to file count in each sub-folder, but that of
AS and SU is less so. Also we can see that the amount of sync
traffic is high given that no actual file download/upload is
incurred. The highest cases we saw in this experiment were
FSL and SU working with Google Drive, in which cases the
sync traffic were as high as 1.8 MB.
• (Figure 3 (b)) The sync traffic of all apps increases propor-
tionally to the number of sub-folders in the sync folder.
• (Figure 3 (a) & (b)) We find that an app can request the
same resource (e.g., user’s info, folder metadata) multiple
times in the same sync operation, causing redundant network
traffic. All the apps have this problem for the OneDrive case.

In summary, there are two takeaways from the results:
• First, current mobile apps offering cloud folder sync incur
high sync turnaround time and sync traffic, both of which
seem to be proportional to the number of sub-folders in the
sync folder.
• Second, there is a substantial amount of redundant traffic
generated by the sync.

The Google Drive experiment of AS/FSL/SU/SME also in-
dicate the similar results. We’ve also tested another 10 mo-
bile apps that offer folder sync with OneDrive and/or Google

Drive. All of them have the problem of proportional time
and traffic with folder count, and most of them have the re-
dundant traffic problem. In addition, we tested 6 apps doing
folder sync with Dropbox. Although we could not see the
content of the sync traffic, we could still judge if sync traffic
is proportional to number of sub-folders. The result was that
5 of the 6 had the problem.
Understanding the study results To understand the above
results, we analyzed the sync traffic captured by the Charles
proxy. We found that the way that most of these apps per-
forming folder sync is to request metadata of every sub-
folder of the sync folder. For example, if a folder A con-
tains three files/directories, the metadata of the folder A has
three entries, with each entry describing the metadata of each
file/directory, such as name, size, last-modified-time, and
many other fields related to cloud file management. These
apps compare the metadata obtained from the cloud with the
metadata of the local file system to determine (for example,
via the last-modified-time field) if a file or a directory in the
sync folder needs to be downloaded from or uploaded to the
cloud. This explains why folder sync turnaround time and
traffic are proportional to sub-folder number in the folder.

To explain why some apps’ sync traffic are proportional
to file count in each sub-folder when the sub-folder number
in the sync folder is fixed, but others are not, it depends
on what content is redundantly requested and the response’s
content encoding. If metadata of sub-folders are redundantly
requested and the responses from server are not compressed,
the sync traffic would be proportional to the file count in the
sub-folders.

As for the cause of redundant traffic, we conjecture that it
is because developers’ error as not all apps have the problem.
How to improve The direct cause of the above problems
is mobile apps track metadata for the whole folder hierar-
chy. In fact, most cloud storage services already provide an
efficient way to implement folder sync, which is a set of
APIs to get changes on cloud folder incrementally. For ex-
ample, Dropbox provides a /delta API [4] to allow devel-
opers to get the list of changes that have been made on the
cloud folder since the last time the /delta API is called.
If none has been changed between the two calls, the latest
call will be responded with a empty list. Using the /delta

API is a more preferable than tracking metadata of the entire
sync folder hierarchy at the time of syncing. However, us-
ing /delta API requires app developer to maintain a state
of the local sync folder, and keep track of local changes be-
tween syncs1. By contrast, using metadata tracking at the
time of syncing requires app developer to maintain or track
nothing. What the developer needs to do is just to get meta-
data for all the sub-folders so that she knows what has been
changed on both side since last sync, which is much easier

1 The mobile apps we tested provide different options of sync timing: sync
at the time when there is any change on the local folder; sync after some
delay after any change on the local folder; fixed interval chosen by user.

and less error-prone than using the /delta API. This can ex-
plain why almost all the current mobile apps offering cloud-
based folder sync adopt the whole folder metadata tracking
method. Note that both Google Drive and OneDrive provide
similar mechanisms allowing developers to implement more
efficient folder sync.

Given the above observation, an possible way to improve
the inefficiency folder sync problem is to convert the whole
folder metadata tracking way used by the apps to the /delta
way. We will explore this option next in Section 4.
3.3 Inefficient cloud file accesses
In addition to cloud storage backup and cloud storage based
folder sync, another popular cloud storage related function-
ality is accessing to cloud file remotely via mobile apps.
Many file manager/explorer/editor apps have in integrated
this functionality. We have conducted another real app study
to understand the cloud file access efficiency of these apps.
In this study, we chose 20 file manger/explorer apps and 5
file editor apps, most of which have accumulated at least 1
million installs from Google Play. We found the following
inefficiency regarding cloud file accesses:
• Many of the apps do not implement caching for down-
loaded cloud files. Therefore, they re-download the whole
file every time user opens the cloud file via the app. 10 of the
20 file manger apps and 2 of the 5 file editor app have this
problem. A more efficient implementation is to cache a cloud
file at the first time that user opens it. Check with the cloud
to see if the file has been updated on the cloud side since last
the open before user reopen it. The local cached copy is used
to served the reopen requests if there is no change.
• Some of the apps implementing cloud file caching, but do
not provide the correct consistency guarantee. For example,
6 of the 20 file manager apps get the metadata of files only at
the time when user open their parent folder, but not when the
files are opened by user. This could lead to user open dated
files with these apps.
• Most of the apps do not implement metadata caching,
meaning every time user navigates to a folder, these apps
request the full metadata of the folder even there has been
no change of the folder since it was last accessed. This will
cause unnecessary metadata traffic, especially for those fold-
ers that contain many items or those that are frequently ac-
cessed. 21 of all the 25 apps have this problem.

Given that many existing apps have the above problem, an
efficient way to improve is to provide a system-wide service
to perform the cloud file caching and cloud metadata caching
for the apps. We will explore this option next in Section 4.
3.4 Inefficient whole file transmission
Related to all the previous inefficiency problems, we also
find that when mobile apps download/upload a file from/to
the cloud storage, whole file download/upload is always
using even there is a very small change in the file. This is
consistent with the observations in recent studies [13, 16,
25]. A more efficient implementation would be to enable a

Cloud	
 storage	
 	

service	
 2	

req./rsp.	

User	
 space	
 …

…

OS	

Cloud	
 storage	
 	

service	
 1	

Mobile	
 device	

StoArranger	

dev.	
 comp.	

StoArranger	

cloud	
 comp.	

App3	

App2	

App2	

Cloud	
 storage	
 	

service	
 1	

req./rsp.	

Cloud	
 storage	
 	

service	
 3	

req./rsp.	

App1	

App2	

App3	

Cloud	
 storage	
 	

Service	
 2	

Cloud	
 storage	
 	

Service	
 3	

Cloud	
 storage	
 	

service	
 1	

Cloud	
 storage	
 	

Service	
 2	

Cloud	
 storage	
 	

Service	
 3	

User	
 space	
 OS	

Mobile	
 device	

…

…

Figure 4. StoArranger work context example.

system-wide incremental-file-sync service in the device. We
will briefly explore this option next in Section 4.

To sum up, the direct causes of the above cloud storage
usage inefficiency problems (Section 3.1-3.4) are:
• There is lack of system level support for cloud storage re-
quest scheduling or incremental file sync (Section 3.1, 3.4).
• Some cloud storage APIs, although useful for improving
cloud storage usage efficiency, are not adopted by app devel-
opers due to their difficulty to use (Section 3.2).
• Developer’s inexperience or/and carelessness (Section 3.2,
3.3). Another good example to support his aspect is that
in our folder sync app study (Section 3.2), we saw two
apps that do not request gzip encoding for server response,
which can cause significant transmission bandwidth waste.
One app (i.e., SME) does this for both OneDrive and Google
Drive sync, which case we can attribute to developer’s in-
experience. Another app (i.e., FSL) requests gzip encoding
for OneDrive, but not for Google Drive. This is because to
receive gzip-encoded response, Google Drive requires de-
velopers to add the “gzip” string not only in the “Accept-
Encoding” filed, but also in the “User-Agent” field, whereas
most other storage services only require the “gzip” string in
the “Accept-Encoding” field. Therefore, we can attribute this
efficiency of FSL to developer’s carelessness.

4. StoArranger: improving cloud storage
usage experience for exiting mobile apps

Motivated by these observations, we design and implement
StoArranger, a system aiming to improve cloud storage
usage experience for mobile applications. As we analyzed
previously, although the cause of poor cloud storage usage
experience in many mobile apps is poor coding by app de-
velopers at first glance, the deeper root cause is the way
that the cloud storage services are deployed onto mobile de-
vices lacks OS-level support to enable client-side file oper-
ation awareness, to enable client-side cloud storage requests
coordination, and to integrate advanced techniques requir-
ing tight OS integration. Since we are seeking to improve
mobile app cloud storage usage experience in a scalable
and practical way, one of our top design goals is to sup-
port exiting mobile apps without modifying the OS and the
apps. Therefore, instead of interposing on system call/device

driver boundaries in the OS, we choose to interpose on the
network transmissions made by the apps. The full version of
StoArranger consists of a device component and a cloud
component. Generally speaking, the StoArranger device
component is a proxy that intercepts and arranges (i.e., ap-
plies the correct logic to) the interaction between mobile
apps and cloud storage services. With our design and im-
plementation, the StoArranger device component is run-
ning as a user level service, and requires no change to the
mobile apps and the underlying mobile OS. The StoAr-

ranger cloud component works with the device component
to solve mainly the inefficient whole file transmission prob-
lem introduced previously. Figure 4 shows an example of the
work context of StoArranger: suppose in a mobile device
there are three apps working with three different cloud stor-
age services. Without StoArranger, the three apps com-
municate directly with their cloud storage services indepen-
dently, in which case poor cloud storage experience can hap-
pen. With StoArranger, all the communications between
app and cloud storage services are redirected to the StoAr-
ranger device component, which arranges and transform
these communications to achieve better cloud storage usage
experience for mobile apps. Depending on different goals,
StoArranger device component can communicate either
directly with the intended storage services, or via the StoAr-
ranger cloud component.
Addressing inefficient cloud storage usage problems We
summarize how the StoArranger device component works
to address the issues identified in Section 3, and discuss the
associated challenges as follows.
• For the uncoordinated cloud backup problem, our obser-
vation is that, with common mobile workloads, it is often
not necessary to back up the content to the cloud at the time
when they are generated or changed. Therefore, StoAr-
ranger tries to delay and batch cloud backup requests from
apps to minimize the impact of transmission tail energy.

There are two main challenges in solving this problem.
First, deciding the batching size and the right timing of up-
loading the batches is not trivial, and is critical to the perfor-
mance of StoArranger. Second, StoArranger must not
perform batching on cloud uploading requests if they were
explicitly requested by the user. However, without changing
mobile OS or apps (which is one of our key design goals), it
is difficult to determine whether a uploading request is gen-
erated due to user’s explicit intention or automatic schedule
made by the apps.
• To solve the inefficient cloud folder sync problem, StoAr-
ranger first detects problematic folder sync activity before
they are actually carried out, and takes advantage of the delta
folder sync feature available in most of the cloud storage
APIs to minimize sync traffic and turnaround time.

There are also two associated challenges. First, detecting
the onset of problematic folder sync is difficult. This is be-
cause problematic folder sync uses the same cloud storage

requests (e.g, folder metadata requests) as other cloud stor-
age operations triggered by users or by automatic job sched-
ule of other apps. Without changing mobile OS or apps, it
is difficult to tell if a request comes from problematic folder
sync or normal cloud storage operations. Second, using the
delta folder sync APIs requires StoArranger to remember
and manage the local state of sync folders, which is not only
error-prone, but can also incur non-negligible system over-
head for StoArranger, which intends to manages all the
cloud storage services being used by the apps.
• To solve the inefficient cloud file accesses problem, StoAr-
ranger performs cloud file caching for apps making access
to cloud storage. With this functionality, StoArranger can
serve the download requests from apps with the locally
cached copies, and issue file download requests to the cloud
only when necessary.

Designing and implementing the cloud file caching are
not trivial because StoArranger is intended to serve all the
apps and all the cloud storage services being used in the
device, an inefficient design or implementation can lead to
high degree of memory overhead and storage duplication.
Ongoing implementation We are currently undergoing
the implementation and evaluation process of our StoAr-
ranger system. To satisfy our goal of addressing the in-
efficiency problems without changing the apps or the OS,
we have implemented an basic user-space daemon frame-
work where the StoArranger device component is running.
We leveraged the WiFi and Cellular proxy settings, which
are readily available in both Android and iOS, to redirect
all the HTTP traffic to the localhost interface. The user-
space daemon monitors the localhost interface using the
libevent library [8]. We have also successfully integrated
the openssl [10] library in to the StoArranger device
component to make it work with HTTS library.

We also aim to enable our solution to be scalable to dif-
ferent cloud storage services. Since different cloud storage
services have different communication flows, hard-coding
these flow logic is not a good option. Otherwise the need of
supporting a new cloud storage service, or a single change
in communication flow made by the supported service
provider, can disrupt StoArranger, and requires new de-
velopment and installation of StoArranger. We have com-
pleted the design and implementation of using xml file to
describe the communication flows of cloud storage services.
The StoArranger device component interprets the xml file
to understand the communication flow of a cloud storage
service, and acts accordingly to bridge the mobile app and
the cloud server. This way, any change of communication
flow in existing cloud storage services or adding any new
cloud storage services would be a matter of updating the
xml file.

5. Related Work
Several recent studies put their focuses on understanding
the characteristics of personal cloud storage services [15,

16, 20, 25]. Hu et al. conducted an early study on compar-
ing cloud storage services’ backup and restoration perfor-
mances [20]. Drago et al. [15] presented a comprehensive
measurement and characterization study on Dropbox. The
same group later conducted another study to compare the
service capabilities (e.g, chunking, client-side deduplication,
data compression) of five popular cloud storage services:
Dropbox, OneDrive, Google Drive, Wuala, and Cloud Drive
[16]. Li et al. performed a measurement study to specifi-
cally understand data synchronization efficiency of six cloud
storage services: Dropbox, Google Drive, OneDrive, Box,
Ubuntu One, and SugarSync [25].

Different from the above studies, which aim to under-
stand the behaviors of cloud storage services, our focus is
to understand how mobile apps make use of cloud storage
services, and further to improve the cloud storage usage ex-
perience for mobile apps.

There exist works on minimizing mobile traffic and en-
ergy consumption through transmission scheduling [12,
14, 22, 29, 32]. Different from the above studies, which
mainly target network traffic/energy consumption optimiza-
tion, our focus is to study and improve the impact of cloud
storage requests from apps on the apps’ cloud storage usage
experience (e.g., response time, traffic/energy consumption).

There have been several client-side middleware systems
targeting client networking performance improvement.
QuickSync [13] is system that optimizes cloud storage syn-
chronization performance in wireless networks based on net-
work conditions. Li et al. proposed a middleware system to
reduce session maintenance traffic generated by cloud stor-
age applications [24]. Unidrive [33] is a client-side middle-
ware system bringing multi-cloud capability to client de-
vices. CacheKeeper [35] performs web caching at system
level for mobile applications.

Our StoArranger system can also be viewed as a mid-
dleware system acting between mobile apps and cloud stor-
age services. Our system coordinates and rectifies cloud stor-
age requests originated from the apps such that the apps’
cloud storage usage experience can be greatly improved.

6. Conclusion
In this paper, through comprehensive app studies, we show
that currently many mobile apps incur poor cloud storage
usage experience. While the direct cause of many of these
problems is poor app implementation, the deeper root cause
is that the way current cloud storage services are deployed
onto mobile devices lacks OS-level support. We propose
StoArranger, a system to interpose on network transmis-
sions to address the problems.

Acknowledgments
We thank our shepherd, Dr. Mahadev Satyanarayanan, and
the anonymous reviewers for their tremendously valuable
feedbacks. This work was supported in part by NSF Award
#1566375.

References
[1] 3G and 4G Wireless Speed Showdown: Which Networks

Are Fastest? http://www.pcworld.com/article/

253808/3g_and_4g_wireless_speed_showdown_

which_networks_are_fastest_.html.

[2] Autosync-Dropbox. https://play.google.com/store/

apps/details?id=com.ttxapps.dropsync.

[3] Charles Web Debugging Proxy. http://www.

charlesproxy.com.

[4] The new /delta API call (beta). https://blogs.dropbox.

com/developers/2012/02/the-new-delta-api-call-

beta/, .

[5] Dropbox core API. https://www.dropbox.com/

developers-v1/core, .

[6] Google Drive APIs - REST v2. https://developers.

google.com/drive/v2/reference/.

[7] Average Internet Speeds Up, But U.S. Still Has Work
to Do. http://www.pcmag.com/article2/0,2817,

2496861,00.asp.

[8] libevent an event notification library. http://libevent.

org/.

[9] Develop with the OneDrive API. https://dev.onedrive.
com/readme.htm.

[10] OpenSSL, howpublished = https://www.openssl.org/.

[11] XFS. http://xfs.org/index.php/Main_Page.

[12] N. Balasubramanian, A. Balasubramanian, and A. Venkatara-
mani. Energy consumption in mobile phones: a measurement
study and implications for network applications. In ACM
IMC, 2009.

[13] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao. Quicksync:
Improving synchronization efficiency for mobile cloud stor-
age services. In ACM MobiCom, 2015.

[14] S. Deng and H. Balakrishnan. Traffic-aware techniques to
reduce 3g/lte wireless energy consumption. In ACM CoNEXT,
2012.

[15] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and
A. Pras. Inside dropbox: understanding personal cloud storage
services. In ACM IMC, 2012.

[16] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras.
Benchmarking personal cloud storage. In ACM IMC, 2013.

[17] Dropbox INC. Dropbox. https://www.dropbox.com.

[18] Google Inc. Google Drive. https://www.google.com/

drive/.

[19] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M. West. Scale and per-
formance in a distributed file system. In ACM SOSP, 1987.

[20] W. Hu, T. Yang, and J. N. Matthews. The good, the bad and the
ugly of consumer cloud storage. In ACM SIGOPS Operating

Systems Review, 2010.

[21] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A close examination of performance and
power characteristics of 4g lte networks. In ACM MobiSys,
2012.

[22] J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck.
Screen-off traffic characterization and optimization in 3g/4g
networks. In ACM IMC, 2012.

[23] J. J. Kistler and M. Satyanarayanan. Disconnected operation
in the coda file system. In ACM SOSP, 1991.

[24] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Y. Zhao, C. Jin, Z.-
L. Zhang, and Y. Dai. Efficient batched synchronization in
dropbox-like cloud storage services. In ACM Middleware,
2013.

[25] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng, Y. Liu,
Y. Dai, and Z.-L. Zhang. Towards network-level efficiency
for cloud storage services. In ACM IMC, 2014.

[26] Microsoft corporation. OneDrive. https://onedrive.

live.com.

[27] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-
bandwidth network file system. In ACM SOSP, 2001.

[28] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl. To
pin or not to pinhelping app developers bullet proof their tls
connections. In USENIX Security, 2015.

[29] F. Qian, Z. Wang, Y. Gao, J. Huang, A. Gerber, Z. Mao, S. Sen,
and O. Spatscheck. Periodic transfers in mobile applications:
network-wide origin, impact, and optimization. In WWW,
2012.

[30] M. Satyanarayanan, J. H. Howard, D. A. Nichols, R. N. Side-
botham, A. Z. Spector, and M. J. West. The itc distributed file
system: Principles and design. In ACM SOSP, 1985.

[31] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly available
file system for a distributed workstation environment. IEEE
Transactions on computers, 39(4):447–459, 1990.

[32] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan. Bartendr: a
practical approach to energy-aware cellular data scheduling.
In ACM MobiCom, 2010.

[33] H. Tang, F. Liu, G. Shen, Y. Jin, and C. Guo. Unidrive:
Synergize multiple consumer cloud storage services. In ACM
Middleware, 2015.

[34] Wikipedia. Representational state transfer. https:

//en.wikipedia.org/wiki/Representational_

state_transfer.

[35] Y. Zhang, T. Chiu, and Q. Li. Cachekeeper: a system-wide
web caching service for smartphones. In ACM UbiComp,
2013.

