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Abstract—Cloud storage usages are becoming increasingly
popular on mobile devices. Through an extensive motivation
study, we find that cloud storage accesses from mobile apps
suffer from several notable problems that undermine usage
experiences. The root cause is that the way of cloud storage
providers deploying their services onto mobile devices relies on
app developers for the correct and appropriate implementations
and lacks the ability of monitoring and servicing client-side cloud
storage accesses. We propose StoArranger, a practical system
framework that solves the problems by coordinating, rearrang-
ing, and transforming cloud storage communications on mobile
devices. We have prototyped the proposed system using two
different implementation approaches. We discuss our experiences
of the implementations in the paper. The real-app evaluation
experiments show that StoArranger can significantly improve
mobile cloud storage access efficiency with little overheads.

Index Terms—Mobile cloud storage; Mobile device; Mobile
apps; Middleware; Traffic reduction.

I. INTRODUCTION

Personal cloud storage services, such as such as Dropbox

[1], Google Drive [2] and OneDrive [3], have been widely used

in our daily lives. In the meantime, with the trend that smart

mobile devices are gradually replacing desktop computers to

serve as users’ main computing devices [4]–[7], cloud storage

service usage on mobile devices is becoming popular rapidly.

However, we find in our motivation study [8] that many of the

existing mobile applications (apps for short hereafter) fall short

of using cloud storage service efficiently, thus leading to poor

usage experience. We identified four groups of inefficiency

problems, which are briefly summarized as follows:

• Uncoordinated cloud backup: we find that mobile apps per-

forming automatic data backup (§II) have their own policies

on backup timing, and data backups are totally uncoordinated.

Uncoordinated data backups can cause frequent and short live

uplink data transmissions, which further lead to unnecessary

energy consumption due to the accumulated 4G/3G/WiFi

promotion/tail energy [9], [10] consumption.

• Inefficient cloud folder synchronization: we find that folder

synchronizations (§II) implemented by many third-party mo-

bile apps are highly inefficient. This is mainly because many

third-party mobile app developers fail to properly use the suit-

able cloud storage development APIs to provide good usage

experience (due to the reasons such as coding/maintenance

complexity and developer experience).

• Inefficient cloud file accesses: we find that, for many apps

that support manual data browsing and backup (§II), they often

neglect supporting those mechanisms that are beneficial to

cloud file access efficiency, such as caching and compression.

For example, we find many apps either do not implement

caching or provide weak/incorrect consistency with caching

implemented. Most mobile apps also do not implement meta-

data caching for cloud folders.

• Inefficient whole file transmission: we find that, when

synchronizing files between mobile device and storage server,

mobile apps almost always perform whole-file transmission

to/from the storage server even when the differences between

the local copy and the storage server’s copy are small. On An-

droid, no app supports advanced file storage/transmission tech-

niques, such as chunking, deduplication and delta-encoding.

The direct causes of the above inefficiency problems are

mainly mobile app implementation related issues, such as

programming proficiency, experience, carefulness of mobile

app developers. However, we show that the root causes stem

from the way that cloud storage providers choose to deploy

their services onto mobile devices. Specifically, cloud storage

services are deployed to mobile devices mainly through the

usage of development APIs in mobile apps. This deployment

approach entirely relies on app developers to properly use the

suitable APIs in different usage scenarios, and to correctly

implement/enable the practices that are beneficial to cloud

storage usage experience (e.g., caching and compression).

Moreover, this deployment approach also leads to the inability

of cloud storage services to monitor and service file operations

on mobile devices and the loose coupling between mobile apps

and storage servers, both of which pose great difficulty in re-

alizing system-level cloud storage service access optimization

on mobile devices. More detailed discussion is deferred to §IV.

Motivated by the above findings, we propose StoAr-

ranger, a system that can rearrange, coordinate, and trans-

form cloud storage accesses from mobile apps. The foundation

of StoArranger is the enabling of cloud storage accesses

monitoring and servicing on mobile devices, based on which a

series of scheduling and adaptation optimizations can be done.

For example, to solve the uncoordinated data backup problem,

we should be aware if a file has been generated/changed and

is being backed up to the cloud storage. Another example

is that to enable caching for cloud storage backed files on



mobile devices, we need to monitor the file open requests and

service them with the cached copies. One major challenge to

achieve client-side file operations monitoring and servicing is

the need of designing practical and scalable solutions suitable

for existing mobile devices. Current solutions usually achieve

the goal by customizing OS kernels (e.g., by intercepting

file-related system calls or interposing on device drivers,

more details in §IV), which is not practical for solving the

problems that exist on millions of mobile devices already in

use. Thus, one of our main goals is to effectively solve the

problems without changing either the apps or the underlying

mobile OSes. To this end, we have explored two design and

implementation approaches (details later in §VI):

The first approach we try is to interpose on network trans-

missions caused by cloud storage accesses from mobile apps.

In this approach, we redirect all network traffic through a user-

level service, which performs scheduling/adaptation optimiza-

tions on cloud storage accesses related network transmissions.

The advantage of this approach is that it naturally enables

cloud storage accesses optimization in a system-wide manner.

However, this approach has higher implementation complexity

and tends to incur higher time overhead, when compared to

the second approach below. Moreover, this approach relies

on a system feature of network proxying, which may not be

available in some platforms, despite the fact that it is offered

in all major mobile OSes, such Android, iOS, and Windows.

The second approach is to interpose on app’s critical library

function call path related to cloud storage accesses. With this

approach, we dynamically instrument optimization code into

a running app’s runtime environment (e.g., Dalvik [11], [12],

ART [13], [14]), such that they will be invoked when the

app accesses cloud storage services. Compared to the previous

way, this approach has lower implementation and maintenance

complexity. But to allow the optimization to have a system-

wide effect, extra effort needs to be taken.

With the ability of monitoring and servicing cloud storage

related operations on mobile devices, we design a series of

solutions to solve the inefficiency problem identified in our

motivation study. We discuss the associated challenges and

the details of these solutions in §V. Our main contribution is

that, to the best of our knowledge, we are the first to study

and improve cloud storage usage experience on mobile devices

from the perspective of individual mobile apps. Specifically,

• we experimentally reveal a series of common and notable

inefficient cloud storage usage problems on mobile devices;

• we analytically investigate the causes of the problems, and

give our insights of designing fundamental solutions;

• we design effective solutions for addressing the problems;

• we explore practical ways of designing the solutions such

that the resulting system can be easily scaled to existing mobile

devices without changing apps or OSes;

• we fully implement the proposed StoArranger system

with two different implementation strategies, and provide our

implementation experiences; and

• we evaluate the proposed system with real-app experiments,

which show that our system can achieve its goals with little

system overheads.

II. BACKGROUND

Cloud storage usage classification. Cloud storage usages on

PC or mobile devices can be generally classified into the

following four categories:

• Automatic data backup. In this usage scenario, applications

automatically backup data to cloud storage when the data is

generated or changed. For instance, many mobile apps gen-

erating user files (e.g., photos, videos, notes and documents)

now allow the data to be automatically backed up to cloud

storage chosen by the user when when the data are generated.

Examples include Facebook [15], Flickr [16], WPS Office

[17], Evernote [18], and many others. Automatic cloud backup

also allows mobile app developers to store/update their app

data, such as configurations and databases, using cloud storage,

so that their apps can seamlessly work on different devices of

the same user without the need of reinventing the wheel of

data synchronization [19]–[21].

• Manual data browsing and backup. In this usage scenario,

users can manually browse their data stored on cloud storage

via one of the access methods described next, and also can

upload file(s) to the cloud storage.

• Folder synchronization. In this usage scenario, users can

link a folder on their local devices (called the local sync

folder) to an online storage folder (called the online sync

folder), such that all changes made in either sync folder and

all its sub-folders will be synchronized to their counterparts

automatically [22]–[24]. This functionality allows users to

have their data seamlessly synchronized across all their devices

in real-time manner, and is thus one of the most important

reasons for cloud storage’s surging popularity.

• Cloud-storage-backed online document editing. In this usage

scenario, users edit their documents (e.g., texts, spreadsheets,

presentations, etc.) on their local devices. All the edits will

be automatically saved to the cloud storage. Examples include

document editor apps (e.g., Android apps [17], [25]–[27]) and

pure online document editors (e.g., Google Docs [28] and

Microsoft Office Online Apps [29]).

Cloud storage access methods. Users can access cloud

storage through the following three methods:

• Official proprietary apps. Cloud storage providers usually

provide their own proprietary applications for major oper-

ating systems, such as Windows, OSX, Android, and iOS.

These official proprietary apps may support some or all

the usage scenarios described previously. The advantage of

official proprietary apps is that cloud storage providers can

implement advanced file storage/transmission techniques, such

as chunking/deduplication [30]–[35] and delta-encoding [36]–

[40], in their apps to seamlessly work with their cloud storage

servers, therefore achieving good performances and usage

experience. However, deploying cloud storage services onto

mobile devices using this approach is slow because of the

wide range of application possibilities.

• Third-party apps. To overcome the slow service deployment

problem with official proprietary mobile apps, cloud storage



providers offer their development APIs [41]–[43] to allow

outside app developers to develop third-party apps making use

of their services. These APIs are usually RESTful APIs [44]

over HTTP. They allow apps to request or update resources

(i.e., user files in cloud storage’s case) on the servers by

making HTTP requests (e.g., GET, PUT, POST, DELETE).

The adoption of RESTful APIs allows cloud storage

providers to deploy their services to application-rich platforms,

such as Android and iOS, easily and quickly, since they do

not need to provide the concrete implementations of third-

party/web cloud storage apps, which are now totally left to app

developers. However, this deployment choice directly leads to

the inefficient cloud storage usage problems on mobile devices

(detailed analysis in §IV). It is worth noting that, since the

broad diversity of mobile apps is the key reason for the success

of mobile platforms, the usage experience of cloud storage

services on mobile devices is largely determined by third-party

apps that make use of cloud storage services.

III. THE MOTIVATION STUDY

In our motivation study, we performed a series of extensive

real app experiments to evaluate cloud storage usage experi-

ence on mobile devices. Here we briefly introduce the study

and the findings (please refer to [8] for the full details).

Finding 1: automatic data backups from mobile apps are

uncoordinated. In this experiment, we studied 25 popu-

lar Android apps that perform automatic photo/video cloud

backup. Most of them upload new/changed data immediately

or shortly after the data are generated/changed. This policy

can lead to a substantial amount of energy waste due to

accumulated promotion and tail energy consumption [9], [10].

We then performed an experiment to study how the idea of

coordinating and batching cloud upload requests (such that

multiple requests can be served in a single burst) can save

energy consumption for cloud backups, when using WiFi, 3G

and 4G as the wireless transmission method. The result showed

that the coordination/batching idea can save a significant

amount of energy for the cellular cases: about 42% and 70%

energy consumption can be saved for the 3G and 4G cases

respectively. Therefore, coordinating cloud upload requests

from mobile apps is promising in saving network transmission

energy consumption, especially for the cellular cases. As

cellular data becomes more affordable and unlimited data plan

gains popularity, it is highly worthwhile to investigate saving

cloud backup energy for cellular cases.

Finding 2: folder sync implemented by mobile apps are

highly inefficient. We also aimed to investigate the efficiency

of the folder sync usage on mobile devices. To this end, we

experimentally evaluated 20 Android apps supporting folder

sync. Our observations are threefold. First, most apps incurred

long folder synchronization turnaround time (i.e., the time

needed to finish a folder sync operation) and high synchroniza-

tion traffic, both of which were proportional to the number of

sub-folders in the sync-folder. Second, there is a substantial

amount of redundant sync traffic generated by many of the

apps tested. Third, apps from the same developer that support

different cloud storage service can have stark differences in

terms of sync time and traffic.

Finding 3: manual data browsing operations are inefficient

and sometimes incorrect. In this experiment, we examined

mobile apps that support the manual data browsing and backup

usage scenario. To do so, we chose 20 file manager/explorer

apps and 5 file editor apps, most of which have accumulated

at least 1 million installs from Google Play. We found the

following inefficiency problems. First, many of the apps tested

do not implement caching for files downloaded from the cloud.

As a result, they re-download the whole file every time when

user browses the cloud file via the app. Second, Some of the

apps implement cloud file caching, but do not provide the

correct consistency guarantee, causing user to access outdated

files. Third, most of the apps do not implement metadata

caching, meaning every time user browses a folder, these apps

request the full metadata of the folder even there has been no

change of the folder since it was last accessed. This causes

unnecessary metadata traffic, especially for folders that contain

many items or those that are frequently accessed.

Finding 4: file transmissions from/to cloud storage on

Android are always whole file transmissions. In all our

experiments, we found that when mobile apps download/u-

pload a file from/to the cloud storage, whole file transmission

always happens even there is a very small change in the

file, causing unnecessary network traffic. This observation is

consistent with the observations in recent studies [45]–[47].

IV. CAUSE ANALYSIS OF THE INEFFICIENCY PROBLEMS

Although our real app studies above were performed on

Android, we believe that the findings are likely to be applied

to other mobile platforms, because the causes of the problems,

as we analyze next, are not platform-dependent. There are two

main causes for the problems we saw in our motivation studies.

Cause 1: inexperience and carelessness of mobile app

developers. Since cloud storage providers rely on app de-

velopers to correctly implement cloud storage accesses and

optimize usage experience, inexperience and carelessness of

mobile app developers directly contribute to the poor mobile

cloud storage experience we observed. For example, in our

motivation study, we observed that most of the apps supporting

folder synchronization we tested incurred long sync time and

high traffic, both of which were proportional to the number

of sub-folders in the sync-folder. This could be fixed by using

a different set of cloud storage development APIs, which are,

however, more difficult to use. Specifically, we found that the

way that most of the apps performing folder sync is whole-

hierarchy metadata tracking, which is to request metadata of

every sub-folder of the sync folder, and compare them to the

ones of local file system to determine if any files have been

changed. In fact, most cloud storage services already provide

an efficient way to implement folder sync, which is a set of

APIs to get changes on cloud folder incrementally [48]–[50].

However, these incremental sync APIs require app developer to

maintain a state of the local sync folder, and keep track of local

changes between synchronizations, which is tedious and error-

prone. By contrast, using whole-hierarchy metadata tracking



at the time of syncing requires app developer to maintain or

track nothing. What the developer needs to do is just to get

metadata for all the sub-folders so that she knows what has

been changed on both side since last sync, which is much

easier and less error-prone than using the incremental sync

APIs. This can explain why almost all the current mobile apps

supporting folder sync adopt the whole folder metadata track-

ing method. Another example is that some apps we tested did

not request compression encoding when communicating with

the cloud storage server, which caused significant transmission

bandwidth waste. According to our experiment results, this

can be attributed to either inexperience of the developers, who

do not realize the importance of compression, or carelessness

of the developers, who fail to correctly follow the specific

requirements made by different storage providers to request

compression encoding.

Cause 2: lack of the ability of client-side cloud storage

related file operations monitoring and servicing , and loose

coupling between client and server. Modern cloud storage

services essentially implement distributed file system (DFS)

functionalities for individual users. In conventional DFS so-

lutions, two key properties enable their correct functionalities

and good performances.

• The first is the ability to monitor and service client side

file operations. For example, traditional DFS solutions, such

as AFS [51], [52], Coda [53], [54], LBFS [30], need to know

when a client opens a file (so that the intended file can be

fetched from the remote server or from the local cache), and

when the client closes the file (so that the file can be written

back). This knowledge is also essential to implementing file

caching and metadata caching, which are important to system

performance improvement.

Existing DFS solutions usually enable the monitoring and

servicing of client-side file operations by interposing on file

system system calls or device drivers. For example, AFS [51],

[52] intercepts file open and close system calls on the client

side and forward them to a client-side cache-management pro-

cess for processing. Coda [53], [54] inherited AFS’s client-side

design and added more functionalities to support disconnected

operations and server replication. LBFS clients [30] resort to

interposing on XFS [55] device driver to obtain notifications

about file opens, closes and modifications, and to achieve the

content-based breakpoint chunking.

• The second property is tight coupling between server and

client. Many useful techniques in existing DFS solutions

require close collaboration between server and client. For

example, in AFSv2 [52] and Coda [53], [54], the callback-

based cache coherence protocol requires both server and client

to work together to ensure coherent client-side caching. In

LBFS [30], the content-based chunking technique requires to

apply the same chunking algorithm on both server and client.

However, mobile apps developed using cloud storage devel-

opment (RESTful) APIs do not have the above two properties,

which makes it hard to fundamentally solve the inefficiency

problems. For example, since these RESTful APIs do not

contain any OS-level mechanisms, such as system call/de-

vice driver interposition, to enable client-side file operation

monitoring and servicing, we are now totally relying on app

developers to correctly implement the client logic, and to

implement those practices that are not necessary but extremely

beneficial (e.g., caching, compression). Also, because of the

lack of client-side OS-level support from the cloud storage

providers, it is hard to coordinate cloud storage access request

from mobile apps at system level. Lastly, since there is no

OS-level support about file operations on the client side, it

is impossible to implement those advanced techniques that

require tight integration with the OS, such as chunking/dedu-

plication [30]–[35] and delta-encoding [36]–[40], without the

cooperation from the server side.

V. SOLUTIONS DESIGN

Driven by the findings and insights obtained in the mo-

tivation study, we propose StoArranger, a system aim-

ing to enable efficient cloud storage usage on mobile de-

vices by properly coordinating, rearranging, and transforming

cloud storage accesses from mobile apps. StoArranger is

founded on the ability of monitoring and servicing cloud

storage accesses on mobile devices. In this section, we focus

on discussing the designs of our solutions, assuming the

availability of such ability. We describe how we achieve

practical client-side cloud storage accesses monitoring and

servicing next in §VI.

A. Cloud backups coordination

For solving the uncoordinated cloud backup problem, our

observation is that cloud storage backup requests generated

automatically by mobile apps are less delay-sensitive than

those generated by explicit user intention. In other words, with

common mobile workloads, it is often not necessary to back up

the content to the cloud at the time when they are generated

or changed. Therefore, the basic idea is to delay and batch

cloud backup requests from apps to minimize the impact of

transmission promotion/tail energy while maintaining a nor-

mal user experience. To achieve this goal, we need to address

the following two main challenges (§V-A1 and §V-A2).

1) Batch size and upload timing determination: The first

challenge is to determine how much cloud upload traffic to

delay and the right timing of uploading the batched requests,

which is critical to the performance of our system. Using

the power models presented in work [10], we performed a

simulation experiment to study the impact of upload traffic

batch size on energy savings when using WiFi, 3G, and 4G

for communication. We skip the details of this experiment here

due to the space limit. The result suggests that it is not always

optimal to batch as many backup request as possible. This is

because the energy saving is not proportional to batch size.

When the ratio between promotion+tail energy consumption

and the transmission energy consumption decreases to certain

value as the batch traffic increases, further increasing batch

size would bring very marginal improvement.

Energy saving growth rate. In our solution, StoAr-

ranger keeps monitoring upload requests issued by the apps,

and calculates the energy saving growth rate, based on which



the decision whether the current batched requests should be

flushed (i.e., sent to their destinations) or not is made. The

energy saving growth rate caused by batching a new upload

request (notated as q) is determined as follows:

Suppose after batching a new upload request q, the size of

all the batched upload requests is s bytes. According to the

power model presented in [10], the energy of transmitting all

the batched requests in a single burst can be calculated as :

E = (α ·H + β) · tx + ρ · Tpt (1)

where H is upload throughput, α is a constant reflecting
the impact of uplink throughput of the underlying wireless

interface, β is the base power when throughput is zero, tx is

the time needed to transmitted the s bytes, ρ is the the average

power during the promotion/tailing stage, and Tpt is the time

duration of the promotion/tailing stage. Since tx = s
H

, the

above can be rewritten as:

E = α · s+ β ·
s

H
+ ρ · Tpt (2)

Because the energy saving achieved by transmitting the new
upload request q together with the exiting batched requests

in a single burst (comparing to transmitting q separately) is

ρ · Tpt. We define the energy saving ratio by batching q as:

R =
ρ · Tpt

E
=

1

(A+ B
H
) · s+ 1

(3)

where A = α
ρ·Tpt

and B = β
ρ·Tpt

. Finally, we define the

energy saving growth rate caused by batching the new upload

request q as the derivative of R with respect to s:

G =
dR

ds
=

M

(M · s+ 1)2
=

1

Ms2 + 2s+ 1

M

(4)

where M = A+ B
H

. As we can see, although keeping batching
new upload requests can always lead to energy saving, the

energy saving growth rate decreases exponentially as the batch

grows. Next, we discuss how the energy saving growth rate is

used in our upload timing policy.

Upload timing determination. Figure 1 shows the decision

flow of how the timings of uploading batched requests are

determined. The idea is to
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Fig. 1. Upload timing decision flow.

balance the energy sav-

ing achieved by delay-

ing cloud upload requests

from apps and data fresh-

ness on the cloud. Specifi-

cally, the existing batched

requests are flushed to

cloud storage if one of the

following conditions (C1-

C4) is true. C1-when inter-

cepting a new upload re-

quest q, which causes the

energy saving growth rate G (Formula 4) to become smaller

than the predefined threshold. C2-when intercepting a new

upload request q, which was explicitly initiated by the user

(described next in §V-A2). C3-when the wireless interface is

awaken by incoming/outgoing traffic. C4-when the system has

been idle longer than a predetermined threshold.

2) Identifying automatic cloud uploads by mobile apps:

Another difficulty is that, to preserve the correct user ex-

perience, StoArranger needs to distinguish cloud upload

requests initiated explicitly by users in the foreground from

those automatically scheduled by mobile apps in the back-

ground. However, without changing mobile OS or apps, it is

difficult to do so, because all cloud upload requests would

look the same to the StoArranger. We make two obser-

vations that can help address this issue. First, when a user

explicitly selects a file to upload, he needs to interact with

an app that has the cloud upload functionality. Therefore,

when StoArranger intercepts a cloud upload request, it

checks whether the foreground app allows user to explicitly

request such an upload. If not, we can safely assume the

upload request being handled was automatically generated by

a background app and thus can be delayed. However, it is

possible that automatic backups by background apps happen

when user is interacting with a foreground app, which also

allows user to initiate such backups manually. For example,

in our motivation study we observe that some photo/video

backup apps do not start the backup until user quits from the

camera app. In this case, if user opens a cloud storage capable

app after quitting from the camera app, we will not be able to

correctly identify the automatic backups and therefore miss

the optimization opportunity. Through extensive app study,

we make another observation, which can help mitigate this

problem. We find that most apps allowing users to explicitly

select and upload files to cloud storage use a system service

named “Document” to allow user to select the files to upload.

As a result, suppose user uses such an app, notated as “A”, to

select a file to upload, we will see the foreground app changes

from “A” to “Document” and then back to “A” right before

the upload request is generated. We named this foreground

app change pattern as “ADA” pattern. StoArranger also

monitors foreground app history and looks for such an ADA

foreground app pattern to determine whether a cloud upload

is explicitly requested by the user.

B. Efficient cloud-based folder synchronization

As we analyzed in Section IV, the direct cause of the

long sync turnaround time and high sync traffic of many

folder sync app is because of the whole-hierarchy metadata

tracking approach they adopt. Developers choose such a way

instead of the preferable incremental sync APIs provided by

most cloud storage providers [48]–[50], because the whole-

hierarchy metadata tracking way is easier to use. Motivated

by these insights, to solve the inefficient cloud folder sync

problem, our design is essentially to transform the efficient

whole hierarchy metadata tracking to the use of incremental

sync APIs. More specifically, upon detecting the problematic

folder sync activity (i.e., whole-hierarchy cloud storage meta-

data tracking by apps), StoArranger takes advantage of the

incremental sync APIs provided by most of the cloud storage

APIs to minimize sync traffic and turnaround time.

Besides efficiently implementing the folder sync function-

ality using the more complicated incremental sync APIs,



the major challenge of realizing this transformation is to

correctly detect the onset of problematic folder sync. This is

because problematic folder sync uses the same cloud storage

requests (e.g, folder metadata requests) as other cloud storage

operations triggered by users or by automatic job schedule of

other apps. Without changing mobile apps/OSes, it is difficult

to tell if a request comes from problematic folder sync or

normal cloud storage operations.

The straightforward way to solve the above challenge is to

first mirror all of the cloud storage folder meta-data locally.

Then StoArranger can carry out the synchronization be-

tween the StoArranger-maintained cloud folder metadata

and its counterpart on the cloud using the efficient delta

folder sync APIs. By doing so, there is no need to distinguish

problematic folder sync from normal cloud storage operations,

because all metadata requests intercepted can be served by the

device component from the cloud folder metadata it maintains.

However, the above approach can trigger a substantial amount

of overhead for the StoArranger system, because every

cloud storage folder and all of their sub-folders needed to

managed by the system. Therefore, it is impractical to mirror

the metadata of the entire cloud storage hierarchy locally.

Our solution is based on the following two observations.

One is that folder syncs based on whole-hierarchy metadata

tracking request the metadata of all the folders in a depth-

first or width-first order within the root sync folder, while

metadata requests caused by other usage scenarios do not have

specific order. The other observation is that the variances of

the intervals between metadata requests from a folder sync

are more stable than metadata requests caused by explicit

user operations (e.g., in the manual data browsing scenario).

As a result, to determine whether a given set of metadata

requests are caused by whole-hierarchy metadata tracking

based folder sync, StoArranger monitors all the intercepted

folder metadata requests, and checks whether these requests

meet the above observations. If so, we can determine that

those metadata requests are part of a problematic folder sync,

and therefore transform only those metadata requests using the

efficient delta folder sync APIs.

C. Efficient cloud file access

To solve the inefficient cloud file accesses problem, the

StoArranger system performs cloud file caching and meta-

data caching for apps making access to cloud storage. Specif-

ically, StoArranger monitors all the outgoing requests for

downloading cloud storage files or obtaining cloud folder

metadata, and manages to cache the files or metadata returned

by the server. Each cached item is uniquely identified by

the URL used to request it. With this functionality, StoAr-

ranger can serve most of the download requests from

apps with the locally cached copies, and issue file download

requests to the cloud only when necessary.

Designing and implementing the cloud file/metadata

caching are not trivial, because StoArranger is intended

to serve all the apps and all the cloud storage services being

used in the device. An inefficient design or implementation

can lead to high processing overhead and high degree of

volatile/permanent storage duplication. We present our way

of efficient implementation next in §VI, followed by the

evaluation in §VII.

VI. SYSTEM IMPLEMENTATION

To allow the StoArranger system to be practical and

easily scalable to existing mobile devices, the central objective

for the StoArranger implementation is to have a fully

working system addressing the inefficiency problems without

changing either the mobile OSes or the apps. We explored two

approaches to achieve this objective.

A. Implementation based on network traffic redirection
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Fig. 2. Network traffic redirection
based implementation overview.

The first approach we

tried for achieving client-

side cloud storage accesses

monitoring and servicing is

to interpose on the network

traffic caused by cloud stor-

age related operations. This

choice was motivated by

the following two observa-

tions. 1) Every cloud stor-

age operation (e.g., getting

file/folder metadata, downloading/uploading resources) even-

tually leads to an HTTP transaction between the mobile device

and the server. 2) All the major mobile OSes (e.g., Android,

iOS and Windows) support a system network proxying feature,

which allows users to redirect network traffic (WiFi or cellular)

to a specified proxy server without changing OS kernels [56]–

[59]. In this implementation (Figure 2), network traffic of all

the apps is redirected to a user-level StoArranger service,

which implements the solutions described in §V. The traffic

redirection was achieved by configuring the Android proxy

server [56], [57] to an IP loopback address (127.0.0.1, or the

localhost), on which the user-level service is listening.

There are two main challenges in this implementation.

One is that, since almost all cloud storage related traffic are

wrapped by HTTPS, correctly and efficiently implementing

the SSL/TLS proxying in the user-level StoArranger ser-

vice is important. In our implementation, we use the SSL

library provided by the well-known OpenSSL project [60]

to implement the SSL/TLS management component for the

user-level service. The other challenge is the need of achiev-

ing high runtime efficiency for the StoArranger service.

This is because with this implementation, network packets

need to travel double the distance of the original system

in the device. An inefficient implementation causing long

time overhead would notably compromise the user experience

when running the StoArranger service. Our experience

of addressing this issue is that the runtime efficiency of the

StoArranger service is largely affected by the way how

the service is monitoring the inbound/outbound traffic. For

example, an implementation based on polling can result in

noticeable app sluggishness and high computation resource

usage. Our implementation is based on the framework of



App App 

SSL/TLS management 

to‐client  

queue 

to‐server 

queue 
cloud upload 

req queue 

Client req 

listener 

from‐client 

queue 

from‐server  

queue 
cloud file 

cache 

Client req 

dispatcher  Cache manager 

Server rsp 

receiver 

Server rsp 

generator 

Cloud metadata 

manager 

cloud folder 

metadata DB 

localhost 

… 

IP layer 

Transporta1on layer 

Applica1on layer 

Tx/Rx 

encoding  

uBlity lib 

to/from cloud storage servers 

A 

B  C 

E 

StoArranger service (running in userspace) 

Cloud uploads  

coordinator 

D 

Fig. 3. Implementation of the user-level StoArranger service.

SSLsplit, a tool for man-in-the-middle attacks against SS-

L/TLS encrypted network connections [61]. We realized an

event-driven model for handling the network events delivered

to the localhost interface using the libevent API [62],

which enables asynchronous event notification by allowing our

handing callback functions to be invoked when the correspond-

ing network events happen.

Figure 3 shows the implementation architecture of the user-

level StoArranger service. There are five parts related to

the design introduced previously. 1) The first part (part A in

Figure 3) is a set of four network message buffer queues

that are directly interfaced with the apps on the device and

the remote storage server. These queues are managed using

the libevent library [62] API. Among them, the from-client

queue is used to receive network traffic originated from the

apps; the to-server queue stores the traffic to be sent out to

the server; the from-server queue stores the traffic received

from the server; and the to-client queue stores the network

traffic to be sent back to the apps. 2) The second part (part

B) contains the client request listener, which implements the

handling logic for event happening at the from-client queue;

and the client request dispatcher, which is responsible for

relaying the unchanged client requests (e.g., those not related

to cloud storage) or putting the adapted client requests to

the to-server queue. 3) Similarly, in the third part (part C),

the server response receiver handles events from the from-

server queue; and the server response generator is interfaced

with the to-client queue, and handles the cases where client

requests can be served locally without contacting the storage

server (e.g., serving with the cached content). The compo-

nents in both part B and C use the transmission/receiving

utility library to organize the traffic content such that the

StoArranger implementation can better scale to different

cloud storage services and is resilient to communication flow

format changes in exiting services (details later in §VI-C). 4)

The fourth part (part D) contains the three decision engines

that manages the three main functionalities of our system:

cloud upload coordination, folder sync, and system-wide cloud

file/metadata caching. The interfaces implemented in these

three engines are used by the components in part B and C

to achieve the designs described in §V. 5) The fifth part (part

E) is three memory-based buffers that are managed by the

three decision engines in part D.

Next, we make two examples to demonstrate how these

components work together. The first example is that for

network traffic that are unrelated to cloud storage, they are

directly relayed from the from-client queue to the to-server

queue (for outbound traffic), and from the from-server queue

to the to-client queue (for inbound traffic). Another example

is that for cloud backups coordination, all backup requests

originating from the apps are rerouted to the localhost

interface, from which the StoArranger service fetches

the rerouted traffic for processing upon being notified about

the events. After the decryption process by the SSL/TLS

management component, the backup requests are put into

the from-client-queue, which automatically triggers the client

request listener to process these backup requests. The client

request listener hands over the backup requests to the cloud

upload coordinator, which runs the algorithm described in

§V-A to determine the best timing for flushing the batched

requests stored in the cloud upload request queue. Once such

decision is made, the batched requests are given to the client

request dispatcher to send to the server.

B. Implementation based on app runtime instrumentation

The advantage of the previous implementation is that it

naturally enables system-wide optimization for cloud stor-

age accesses because of the system network traffic proxy-

ing feature. However, the need of handling HTTPS traffic

introduces two limitations. The first is that it requires a

system SSL certificate to be installed on the device for the

StoArranger service, with which some users may not feel

comfortable. The second limitation is that the solution cannot

work with apps implementing SSL pinning [63] without the

cooperation from the service providers. Moreover, as we can

see, the implementation complexity is relatively high.
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Fig. 4. App runtime instrumentation
based implementation overview.

We aimed to design an-

other way to implement

the StoArranger func-

tionalities while address-

ing the above limitations.

To avoid dealing with SS-

L/TLS traffic, we need to

have a way to handle the

traffic before/after they

are encrypted/decrypted.

Our observation is that,

take Android as an exam-

ple, calls to cloud storage

APIs will eventually cause calls to Android HTTP library func-

tions (e.g., the HttpURLConnection class or the Apache

HTTP Client class [64]). Therefore, we can hook Android

HTTP library calls to intercept cloud storage API calls made

by apps. Figure 4 shows the high level idea of this mechanism.

In Android, the runtime system (i.e., Dalvik [11], [12] or

ART [13], [14]) uses a data structure called “vtable” to

bridge virtual methods and the actual method instances. By



manipulating the vtable of the runtime system, we can hook

Android library function calls in both Dalvik (using techniques

like Dynamic Dalvik Instrumentation [65]) and ART (using

a similar technique [66]). In this implementation, by instru-

menting the app runtime system, we redirect those HTTP

library related virtual methods to our own patched method

instances. These patched method instances work with our

middleware framework runtime component, which implements

the solutions described in §V.

C. Scalability to different cloud storage services and resilience

to communication format changes

Mobile apps communicate with the cloud storage servers

usually need to conform with certain communication formats

defined by the service provider. For example, cloud storage

messages exchanged between app and server contain infor-

mation describing different properties of the communication,

such as request ID, response ID, session ID, resource size,

etc. Different service providers define their own formats

regarding how these information should be organized or

parsed by the apps. Moreover, even for the same provider,

its communication format may be updated over time. Hard-

coding the StoArranger’s optimization logic conforming

to an existing communication format is not a good option,

since a small change in the format would render it unusable,

requiring recoding and reinstallation. Therefore, it is desirable

to have a solution for StoArranger to easily scale to many

different cloud storage services, or adapt to frequent changes

in communication formats. To address this challenge, we

design a mechanism to describe cloud storage communication

flow formats. With this mechanism, how different types of

cloud storage requests/responses should be transformed while

conforming to the communication format is describe using

XML. Our implementation of StoArranger is essentially

an interpreter of these XML description. By doing so, both

dealing with changes of communication flow format in existing

cloud storage services and adding any new cloud storage

services would be a matter of updating the XML description.

We were actually benefited from this design: during our im-

plementation, Google Drive added a new request/response pair

at the beginning of the whole flow, which caused the mobile

apps ceased to respond to the StoArranger. With the XML

description interpretation functionality, we simply added this

new request/response pair to the XML description to make the

whole process work again, without reprogramming/reinstalling

the StoArranger system.

D. The prototype system

We have prototyped the proposed StoArranger system

on two Android platforms: Samsung Galaxy S4 running An-

droid 4.4.4 and Motorola Moto G2 running Android 5.1.1.

In our prototype system, all the designs and implementations

introduced previously are packed in to an Android applica-

tion package (APK), which can be installed onto Android

devices via the normal installation mechanism. For the

network traffic redirection based approach, the installation

process automatically configures the system proxy server,

installs the StoArranger system SSL certificate, and the

StoArranger service. For the app runtime instrumentation

based approach, the installation procecss installs a background

daemon, which monitors app launches and instruments the

newly launched app’s runtime (Dalvik or ART) dynamically.

VII. SYSTEM EVALUATION

We used our prototype system on Samsung Galaxy S4

running Android 4.4.4 in the evaluation experiments.

Cloud backup coordination. As discussed previously,

properly determining batch size and upload timing of cloud

upload requests is critical to achieving good performance for

cloud backup coordination performance with StoArranger.

In this experiment, we designed a program to simulate the

cloud upload scenario on mobile device and evaluate our

approach. In each round of testing, the program sequentially

generated 50 upload requests. The size of each upload was

randomly decided from the range between 20 KB to 1 MB.

For a new upload request, the program ran StoArranger’s

upload timing determination algorithm to decide whether the

request should be added to the exiting batch, or be sent to

the storage server along with the existing batched requests. If

the latter is true, we mark this upload request as a “trigger

request”. For each wireless communication interface (4G, 3G,

and WiFi), we tested two uplink bit rates: the base bit rate of

1 Mbps, and the average bit rate in practice according to the

literature. For 4G/3G/WiFi, this average uplink bit rate was

set to 6/2/12 Mbps respectively [67], [68]. For each bit rate,

two rounds of evaluation were performed.

Figure 5 (a), (b) and (c) show the results for 4G, 3G and

WiFi. The x-value of each point in the figures represents the

index of an upload request, and the y-value is the energy saving

ratio if the upload request is chosen as the trigger request. The

energy saving ratio is calculated as E′
−E
E

, where E is the en-

ergy consumption (calculated using the power models [10]) of

uploading the trigger request along with the batched requests

in one burst, and E′ is the energy consumption of sending all

the requests separately. The arrows in each figure point to the

actual trigger requests selected by StoArranger. From the

results we can see that StoArranger can achieve significant

energy consumption savings for the uploads, especially for the

4G case (about 58% to 75% energy reduction) and the 3G case

(about 45% to 55% reduction). Also, StoArranger strikes

a good balance between energy saving and upload freshness:

further batching of upload requests in all test rounds would

only bring very marginal gain on energy reduction.

Cloud-based folder synchronization. To evaluate how

StoArranger can improve performances of cloud-based

folder synchronization for mobile apps, we performed tests for

four popular apps offering the functionality on our prototype

systems (i.e., the implementation based on network traffic

redirection, short as NTR below; and the implementation based

on app runtime instrumentation, short as ARI below). Due to

the space limit, we report the results for the OneSync app [69].

All other apps we tested have the similar results.

In the evaluation, we used the similar setting as in our

motivation study: i) Two metrics are evaluated: folder sync
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Fig. 5. Cloud backup coordination upload timing determination with three different wireless interfaces - (a)
4G, (b) 3G, and (c) WiFi.
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turnaround time, which is the time duration of whole sync

(Figure 7); and folder sync traffic, which is total amount

of traffic generated during the sync (Figure 8). ii) For each

metric’s evaluation, the root sync folder has two configura-

tions: one is that the root folder has a fixed number of 3

sub-folders, the number of files contained in each sub-folder

varies (sub-figures (a) in Figure 7 and 8); the other is that

the root folder contains a varied number of levels of sub-

folders, each level has 3 sub-folders, and the leaf sub-folder

has 5 files (sub-figures (b) in Figure 7 and 8). iii) Before each

sync operation, the local sync folder is already consistent with

the cloud folder. The sync operation just confirms local has

been synced with the cloud. No file download/upload actually

happens. From the results we can see that without running

StoArranger, the app incurred a long turnaround time and

high sync traffic. For example, the sync turnaround time and

network traffic for the configuration of 3 sub-folders with 20

files each are 6 seconds and 91 KB. Similarly, these values

for the configuration of 3 levels of sub-folders are 29 seconds

and 146 KB. As a comparison, with StoArranger(both the

NTR and ARI implementations) and for all the cases, the sync

turnaround time ranged between 0.4 to 1.6 seconds, and the

traffic generated was around 1.5 KB.

Cloud storage file/metadata caching. We evaluate how

cloud file/metadata caching provided by StoArranger can

improve file access performance using our prototype systems.

In this experiment, we opened files of different sizes stored on

Microsoft OneDrive [3] using the official OneDrive app [70],

and recorded the time needed and network traffic generated.

We performed the tests in five rounds, and report the averages

here. Figure 6 shows the results of the time metric. With the

original system, files are fetched from storage server every

time time when they are opened. With StoArranger, in

the case of cache miss, files are fetched from cloud server

and stored into the cloud file cache; in the case of cache

hit, the file open operations by the app are serviced by

StoArranger with the local cached data.

From the results we can see that StoArranger can no-

tably improve file access performances for the cache hit case:

on average, it can save about 60% of the time needed to open

a file for both implementation approaches when compared to

the original system (and 100% of network traffic). In the case

of cache miss, StoArranger imposes about 15% of time

overhead for opening cloud-stored files. To our surprise, the

ARI implementation incurs more time overhead than the NTR

approach on cache misses, which is contrary to the fact that

the NTR approach has longer data travel path than ARI. Our

conjecture is that, with our current implementation of ARI,

scheduling and adaptation operations are implemented using

Android framework APIs, which can cause overhead due to

the interpretation execution nature of Dalvik [11]. We are now

working on translating the ARI implementation to using native

code to improve the ARI approach’s performance on Dalvik.

System overhead for non-cloud-storage traffic. Our sys-

tem can significantly improve cloud storage accesses per-

formance. However, since non-cloud-storage network traffic

also needs go through StoArranger (i.e., the StoAr-

ranger service with NTR, and the instrumented component

with ARI), in which case StoArranger just simply relays

them between the server and the traffic-originating app, they

can suffer from certain performance degradation. To evaluate

this aspect, we designed an app that uploads/downloads files

to/from a HTTP server. Figure 9 shows the time needed to

transfer the non-cloud-storage files of different sizes using this

app. In the meantime, to evaluate how our system is resilient to

background computation load, we ran a computation-intensive

program that imposed different background loads on CPU.

Due to the space limit, we report the case when the background

CPU usage is 75%, which is shown in Figure 10. All the data

in Figure 9 and 10 are the average of five different test rounds.
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Fig. 10. Time overhead for non-cloud-storage traffic (with 75%
background CPU load).

From the results we can see that StoArranger causes

only a small amount of time overhead for transmitting non-

cloud-storage traffic. For example, even when the background

CPU usage was 75%, the NTR approach added about an

average of 15%/10% of extra time for downloading/uploading

the files, the values of the ARI approach were around 8%/6%.

It is worth noting that the results show the ARI implementation

approach generally incurred less time overhead than the NTR

approach for non-cloud-storage traffic, which supports our

motivation of exploring the ARI method in the first place.

Moreover, like imposing background CPU load, we have also

added different background memory usage and I/O activities

to the experiments, where similar results have been obtained.
TABLE I

POWER CONSUMPTIONS (UPLOADING CLOUD-STORAGE FILES WITH NTR)

File size (KB) 5 10 50 100 500 1000

Original (mW) 532.3 541.1 563.1 610.5 629.6 647.6

With SA (mW) 551.8 561.4 599.7 617.1 639.4 660.9

Overhead 3.6% 3.7% 3.5% 1.0% 1.5% 2.0%

Power consumption overhead. We have also evaluated

the power consumption overhead of our system with real-app

experiments. We used a power monitor [71] to measure the real

power consumption when using the official OneDrive app to

upload/download files. Table I shows the power consumptions

for uploading case, which are calculated as the difference

between the system power when uploading and the baseline

system power. The result suggests that StoArranger incurs

a very small amount of power overhead (around 1% to 3%).
VIII. RELATED WORK

Cloud storage services measurement and characteri-

zation (e.g., [45], [46], [72], [73]). Hu et al. conducted an

early study on comparing cloud storage services’ backup and

restoration performances [72]. Drago et al. [73] presented

a comprehensive measurement and characterization study on

Dropbox. The same group later conducted another study to

compare the service capabilities (e.g, chunking, client-side

deduplication, data compression) of five popular cloud storage

services: Dropbox, OneDrive, Google Drive, Wuala, and Cloud

Drive [45]. Li et al. performed a measurement study to

specifically understand data synchronization efficiency of six

cloud storage services: Dropbox, Google Drive, OneDrive,

Box, Ubuntu One, and SugarSync [46].

Minimizing mobile traffic and energy consumption

through transmission scheduling (e.g., [9], [74]–[77]).

TailEnder [9] schedules transmissions to minimize tail energy

consumption while meeting the deadlines of transmission

requests. Bartendr [74] is a system performing energy-aware

cellular data scheduling base on the prediction of cellular sig-

nal. Deng and Balakrishnan proposed to turn on/off the cellular

radio interface base on the traffic pattern history and prediction

[75]. Qian et al. performed a large-scale measurement study

[76] on the impact of cellular network periodic transfers, which

can incur significant energy overhead due to accumulative

promotion/tail energy. Huang et al. [77] proposed to treat

traffic generated when screen is off differently from those

generated when screen is on, based on the observation that

screen off traffic is more delay-tolerant than screen-on traffic.

Client-side middleware systems targeting client net-

working performance improvement (e.g., [47], [78], [79]).

QuickSync [47] is system that optimizes cloud storage syn-

chronization performance in wireless networks based on net-

work conditions. Li et al. proposed a middleware system

to reduce session maintenance traffic generated by cloud

storage applications [80]. Unidrive [78] is a client-side middle-

ware system bringing multi-cloud capability to client devices.

CacheKeeper [79] performs web caching at system level for

mobile applications.

IX. CONCLUSION AND FUTURE WORK

We have presented StoArranger, a user-space middle-

ware framework that can significantly improve cloud storage

usage experience for mobile devices. StoArranger ad-

dresses the problems of inefficient mobile cloud storage ac-

cesses, which were identified in our extensive motivation

study, by coordinating, rearranging, and transforming cloud

storage communications on mobile devices. We have imple-

mented StoArranger with two different implementation

approaches. The real-app evaluation experiments suggest that

StoArranger can effectively achieve its goals with small

system overheads.

Our current system has not yet solved the fourth problem

identified in our motivation study, which is the always-whole-

file-transmission problem. The existing solutions, such as

chunking, deduplication, and delta-encoding are not suitable

for solving the problem because of low deduplication ratio

of these methods on many popular document formats [81]

and resource constraints of mobile devices [47]. Meanwhile,

solutions for this problem require collaboration from the

storage infrastructure, which is beyond the focus of this paper.

We are now researching on a solution suitable for mobile

devices with the help from edge equipments, and hope to

report our experience about it in the near future.
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